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Abstract

Diffusion models (DMs) can generate diverse images with
exceptional visual quality aligned with the input natural
language prompt. However, the inner workings of DMs, es-
pecially the evolution of internal representations throughout
the generative process is still largely a mystery. Mechanis-
tic interpretability techniques, such as Sparse Autoencoders
(SAEs), aim at uncovering the fundamental operating princi-
ples of models through granular analysis of their features,
and have been successful in understanding and steering the
behavior of large language models at scale. In this work,
we leverage the SAE framework to probe the inner work-
ings of text-to-image DMs, and uncover a variety of human-
interpretable concepts in their activations. We find that even
before the first reverse diffusion step is completed, the final
composition of the scene can be predicted surprisingly well
by looking at the spatial distribution of activated concepts.
We find that while image composition is mostly finalized by
the middle of the reverse process, image style is still subject
to change. Finally, we design SAE-based interventions that
control the layout and style of the generated image.

1. Introduction
Diffusion models [10, 29] have revolutionized the field of
generative modeling and have established state-of-the-art
in image [4, 11, 19, 24, 26], audio [15], and video gener-
ation [12]. Text-conditioning in DMs [24, 25], i.e. guid-
ing the generation process via text prompts, enables careful
customization of generated samples while simultaneously
maintaining exceptional sample quality.

While DMs excel at producing images of exceptional
quality, the internal mechanisms by which they ground tex-
tual concepts in visual features that govern generation re-
main opaque. The time-evolution of internal representa-
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tions through the generative process, from pure noise to
high-quality images, renders the understanding of DMs even
more challenging compared to other deep learning models.
A particular blind spot is the early, ’chaotic’ stage [33] of
diffusion, where noise dominates the generative process.

Recently, a flurry of research has emerged towards de-
mystifying the inner workings of DMs [1, 2, 5, 6, 8, 16, 21,
22, 31]. However, most existing techniques are aimed at
addressing particular editing tasks and are not wide enough
in scope to provide a more holistic interpretation on the
internal representations of diffusion models. Mechanistic
interpretability (MI) [20] is focused on addressing the above
challenges via uncovering causal mechanisms from inputs to
outputs that reveal how neural networks process information
internally. Sparse autoencoders have emerged within MI as
powerful tools to discover highly interpretable features (or
concepts) within large models at scale [3]. These learned
features enable direct interventions to steer model behavior
in a controlled manner. Despite their success in understand-
ing language models, the application of SAEs to diffusion
models remains largely unexplored. Recent work Surkov
et al. [30] leverages SAEs and discovers highly interpretable
concepts in the activations of a distilled DM [27]. While the
results are promising, the paper focuses on a single-step dif-
fusion model, and thus the time-evolution of visual features,
a key characteristic and major source of intrigue around the
inner workings of DMs, is not captured in their work.

In this paper, we aim to bridge this gap by addressing the
following key questions:
• What kind of visual concepts are present in the early,

’chaotic’ stage of the generative process?
• How do visual representations evolve through various

stages of the generative process?
• Can we harness the uncovered concepts to steer the gener-

ative process in an interpretable way?
We perform extensive experiments on the features of a

large-scale text-to-image diffusion model, Stable Diffusion



Figure 1. General scene layout emerges during the very first gener-
ation step in diffusion models.

v1.4 [24], and extract thousands of interpretable concepts
via SAEs. Strikingly, we find that the general composition
of the image emerges even before the first reverse diffusion
step, at which stage the model output carries no identifiable
visual information (see Figure 1). While image composition
is mostly finalized by the middle of the reverse process, we
find that image style is still subject to change. Moreover, we
demonstrate that intervening on the discovered concepts has
interpretable, causal effect on the generated output image.
We can manipulate image layout at early time steps, and
influence image style at middle time steps. Our work sheds
light on the evolution of visual representations in text-to-
image diffusion models and opens the door to powerful,
time-adaptive editing techniques.

2. Method
Training Sparse Autoencoders– We opt for k-sparse au-
toencoders with TopK activation given their success with
GPT-4 [7] and SDXL Turbo [30]. Exact parametrization of
the SAE and training objective can be found in Appendix A.

We focus on Stable Diffusion v1.4 (SDv1.4) [24] as our
diffusion model due to its widespread use. To extract acti-
vations for SAE training, we sample 1.5M training prompts
from the LAION-COCO dataset [28] and store updates made
by the cross-attention transformer blocks to the residual
stream while generating the corresponding images.

Throughout this paper, we assume that the diffusion pro-
cess is parameterized by a continuous variable t ∈ [0, 1],
where t = 1 corresponds to pure noise distribution and t = 0
corresponds to the distribution of clean images. To cap-
ture the time-evolution of concepts, we collect activations
at time steps corresponding to t ∈ [0, 0.5, 1.0] and analyze
late (t = 0), middle, and early (t = 1.0) diffusion dynamics
respectively. For each time step t, we target 3 different cross-
attention blocks in the denoising model of SDv1.4 , which we
refer to as down_block, mid_block, up_block.
We specifically include the mid_block or the bottleneck
layer of the U-Net since earlier work found interpretable
editing directions here [16]. Other blocks are chosen to be
the closest to the bottleneck layer in the encoder and de-
coder paths. Note that, in SDv1.4 the performance of the
text guidance is improved through Classifier-Free Guidance

(CFG) [9], where the score is modified as ε̃θ(xt, t, c) =
εθ(xt, t, c) + ω (εθ(xt, t, c)− εθ(xt, t,∅∅∅)) where ω de-
notes the guidance scale, c is the conditioning input and
∅∅∅ is the null-text prompt. Therefore, we collect both the
text-conditioned diffusion features (called cond) and null-
text-conditioned features (denoted with uncond).

We train separate SAEs for different block,
conditioning, timestep combinations to re-
construct individual feature vectors along the spatial
dimension. Training results are in Appendix B. We focus
on the cond features, as we hypothesize that such features
may be more aligned with human-interpretable concepts
due to the direct influence of language guidance through
cross-attention (more on this in Appendix E).

Interpreting SAE features– We represent each concept
with an associated list of objects, constituting a concept
dictionary. The keys are unique concept identifiers (CIDs)
assigned to each of the concept vectors of the SAE. The
values correspond to objects that commonly occur in areas
where the concept is activated. We leverage a zero-shot
vision pipeline to annotate generated images with semantic
segmentation masks, and associate concepts with a given
object label if the concept’s activation pattern sufficiently
overlaps with the object’s mask. In the interest of space, we
detail how we build the concept dictionary in Appendix C.

Predicting image composition from SAE features–
Suppose that we would like to predict the location of a par-
ticular object in the final generated image, but before the
reverse diffusion process is completed. First, given SAE
features from a given intermediate time step, we extract the
top activating concepts for each spatial location. Next, we
create a conceptual map of the image by assigning a word
embedding to each spatial location based on our curated
concept dictionary. Given a concept we would like to local-
ize, such as an object from the input prompt, we produce a
target word embedding and compare its similarity to each
spatial location in the conceptual map. Finally, we assign
the target concept to spatial locations with high similarity.
This technique can be applied to each object present in the
input prompt (or to any concepts of interest) to predict the
composition of the final generated image. A visual overview
of the method is included in Appendix D.

3. Experiments
We provide experimental details on curating the concept dic-
tionary in Appendix C.1. A qualitative analysis of discovered
concept categories is deferred to Appendix G.

Emergence of image composition– We investigate how
image composition emerges and evolves in the internal rep-
resentations of the diffusion model. We sample 5k LAION-
COCO test prompts, and generate corresponding images
with SDv1.4. Then, we follow the methodology described
in Section 2 to predict a segmentation mask for every noun



in the input prompt using SAE features at various stages
of diffusion. We evaluate the mean IoU between the pre-
dicted masks and ground truth annotations from our labeling
pipeline at various time steps. Numerical results are summa-
rized in Figure 2a.

First, we surprisingly find that the image composition
emerges during the very first reverse diffusion step (even
before the first complete forward pass!), as we are able to
predict the rough layout of the final scene with IoU ≈ 0.26
from mid_block SAE activations. As Figure 1 demon-
strates, the general location of objects from the input prompt
is already determined at this stage, even though the model
output (posterior mean prediction) does not contain any vi-
sual clues about the final generated scene yet. More exam-
ples can be seen in the second column of Figure 2b.

Second, we observe that the image composition and lay-
out is mostly finalized by the middle of the reverse diffusion
process (t = 0.5), which is supported by the saturation in the
accuracy of predicted masks. Visually, predicted masks for
t = 0.5 and t = 0.0 look similar, however we see indications
of increasing semantic granularity in represented concepts.
For instance, the second row in Figure 2b depicts predicted
segmentation masks for the noun church. Even though the
masks for t = 0.5 and t = 0.0 are overall similar, the mask
in the final time step excludes doors and windows on the
building, suggesting that those regions are assigned more
specific concepts, such as door and window. We note that
segmentation IoU is evaluated with respect to our zero-shot
annotations, which are often less accurate than our predicted
masks for t = 0.0, and thus the reported IoU is bottlenecked
by the quality of our annotations.

Finally, we find that image composition can be ex-
tracted from any of the investigated blocks, and thus we
do not observe strong specialization between these layers for
composition-related information. However, up_block pro-
vides more accurate segmentations than down_block, and
mid_block provides the lowest due to the lower spatial
resolution (more details in Appendix E).

Causal interventions – Dataset examples that activate a
particular concept provide only correlational interpretation.
Here, we investigate causal effects on generated images by
observing the results of directly manipulating SAE concepts.

Image composition. To assess whether one can control
the composition of the generated image using our discovered
concepts, we propose a simple task: enforce a specific object
to appear only in a designated quadrant (e.g., top-left) of the
image. To achieve this, we intercept mid_block activa-
tions of the diffusion model and edit them in the latent space
of the SAE by amplifying the strength of the target concept
in the first 40% of reverse diffusion. An overview of this
intervention can be seen in Figure 3. More details can be
found in Appendix F.1.

In Figure 4, we consider bee, book, and dog as the objects

(a) Evolution of predicted image composition accuracy (in terms of IoU)
over the reverse diffusion process (mid_block).

(b) Visualization of segmentation maps predicted from extracted concepts
across reverse diffusion steps (up_block).

Figure 2. Evolution of predicted image composition during the
reverse diffusion process, shown through segmentation accuracy
(top) and visualizations (bottom).

Figure 3. Overview of our SAE interventions.

of interest. We show the generated images after the interven-
tion for four different quadrants: top-left, top-right,
bottom-left, and bottom-right. In order to find the
CIDs, we sweep through the concept dictionary and collect
all the CIDs where the word of interest appears. We observe
that the objects of interest are successfully guided to their
respective locations. Moreover, the concepts that we do not
intervene on, such as the flower in the first row are preserved.

Image style. Next, we investigate whether SAE fea-
tures can be altered to influence the style of the image.
To this end, given a CID related to the style of interest,
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Figure 4. Intervening with the spatial composition of images. We
restrict all the concepts related to the object/noun to appear only
in a particular quadrant of the image. We use the SAE trained on
mid_block activations at t = 1.0.

No Intervention #10 #2787 #13 #49

1

Figure 5. Example interventions at the early stages of the reverse
diffusion. We intervene on activations at t = 1.0.

we modify the activation at each spatial location during
the first 40% of reverse diffusion (details in Appendix
F.2). Through our concept dictionary and visual inspec-
tion of top dataset examples, we identify four CIDs that
seem to have a consistent style: #10 - comic book
cover, poster, #2787 - computer screen, #13
- books, and #49 - game art/style. Top activat-
ing images for each of these concepts can be found in Ap-
pendix I. We depict examples of the generated images after
intervention in Figure 5. We crucially observe that for a
fixed style c, the generated images have similar patterns of
lines, directions of edges, image gradients, etc. rather than
artistic styles. Therefore, we hypothesize that during the
earlier stages of reverse diffusion, concepts are more aligned
with low-level image features rather than high-level seman-
tics. For instance, #13 - books may be more related to
book-looking objects rather than images of actual books.

In an effort to control artistic style, we turn our attention
to the middle stages (t ≈ 0.5) of diffusion, and intervene
on activations for t ∈ [0.3, 0.6] using our SAE trained on
t = 0.5 features. Through our concept dictionary and vi-
sual inspection of top dataset examples, we identify CIDs

No Intervention #1314 #524 #2137

1

Figure 6. Example interventions at the middle stages of the reverse
diffusion. We intervene on activations at t = 0.5.

#1314 that controls the cartoon look of images, #524 ap-
pears mostly with beach images where sea and sand are
visible together, and #2137 activates the most on paintings
(top activating images can be found in Appendix I). We
provide examples of the generated images in Figure 6. Inter-
estingly, we observe that the interventions do not alter the
layout of the image as before. Instead, we observe changes
in the texture (cartoon look, sandy texture, smooth straight
lines, etc.) and local edits more aligned with artistic styles.
Contrasting this with t = 1.0 edits, we conclude that middle
time steps are responsible for more high-level artistic and
textural edits where the image layout is already determined
in the earlier time steps (also evident from our semantic
segmentation experiments).

4. Conclusions and limitations
In this paper, we take a step towards demystifying the in-
ner workings of text-to-image diffusion models under the
lens of mechanistic interpretability, with an emphasis on
understanding how visual representations evolve over the
generative process. We show that the semantic layout of
the image emerges as early as the first reverse diffusion step
and can be predicted surprisingly well from our learned fea-
tures, even though no coherent visual cues can be identified
in the model outputs at this stage yet. As reverse diffusion
progresses, the semantic layout becomes progressively more
refined, and the image composition is largely finalized by
the middle of the reverse trajectory. Furthermore, we con-
duct feature intervention experiments to demonstrate that
the learned SAE features can be leveraged to control the
generation process. Our experiments suggest that concepts
discovered at early stages of diffusion are related to image
composition and low-level visual features, whereas the mid-
dle stages are responsible for higher-level concepts such as
artistic style. Developing editing techniques that adapt to the
evolving nature of diffusion representations is a promising
direction for future work.
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Appendix

A. SAE architecture and loss
Let x ∈ Rd denote the input to the autoencoder that we want to decompose into a sparse combination of features. Then, we
obtain the latent z ∈ Rnf by encoding x as

z = Eθ (x) = TopK (ReLU (Wenc (x− b))) ,

where Wenc ∈ Rnf×d denotes the learnable weights of the encoder, b ∈ Rd is a learnable bias term, and TopK function keeps
the top k highest activations and sets the remaining ones to 0. Note, that due to the superposition hypothesis, we want the
encoding to be expansive and therefore nf >> d. Then, a decoder is trained to reconstruct the input from the latent z in the
form

x̂ = Dθ (z) = Wdecz + b,

where Wdec ∈ Rd×nf represents the learnable weights of the decoder. Note that the bias term is shared between the encoder
and the decoder. We refer to fi = Wdec[:, i] columns of Wdec as concept vectors. We obtain the learnable parameters by
optimizing the reconstruction error

Lrec (Wenc,Wdec, b) = Lrec (θ) = ∥x− x̂∥22 .

In practice, training only based on the reconstruction error is insufficient due to the emergence of dead features. Dead features
are defined as directions in the latent space that are not activated for some specified number of training iterations resulting in
wasted model capacity and compute. To resolve this issue, Gao et al. [7] proposes an auxiliary loss AuxK that models the
reconstruction error of the SAE using the top-kaux dead features. To be specific, define the reconstruction error as e = x− x̂,
then the auxiliary loss takes the form,

Laux (θ) = ∥e− ê∥22

where ê = Wdecz approximates the reconstruction error with the top-kaux dead latents. The combined loss for the SAE
training becomes:

L (θ) = Lrec (θ) + αLaux (θ)

where α is a small mixing coefficient. We set α = 1
32 and kaux = 256 in our experiments. We set the latent expansion factor

as 4, i.e. nf = 4d.

B. Results on SAE training
We train SAEs on the residual updates in the diffusion U-Net blocks down_blocks.2.attentions.1,
mid_block.attentions.0, up_blocks.1.attentions.0, referred to as down_block, mid_block,
up_block. We keep track of normalized mean-squared error (MSE) and explained variance of the SAE reconstructions. In
Tab. 1 we provide the complete set of training metrics for all combinations of block, conditioning, timestep, and k.

C. Building the concept dictionary
Multiple work on automatic labeling of SAE features resort to LLM pipelines where the captions corresponding to top
activating dataset examples are collected and the LLM is prompted to summarize them. However, these approaches come with
severe shortcomings. First, they may incorporate the biases and limitations of the language model into the concept labels,
including failures in spatial reasoning [13], object counting, identifying structural characteristics and appearance [32] and
object hallucinations [17]. Second, they are sensitive to the prompt format and phrasing, and the instructions may bias or limit
the extracted concept labels. Last but not least, it is computationally infeasible to scale LLM-based concept summarization to
a large number of images, limiting the reliability of extracted concepts. For instance, [30] only leverages a few dozens of
images to define each concept. Therefore, we opt for designing a scalable approach that obviates the need for LLM-based
labeling and instead use a vision-based pipeline to label our extracted SAE features.



Table 1. Performance metrics for different block types, timesteps, conditioning and k values. Best metrics for each conditioning block are
underlined. Best overall metrics are bold.

Conditioning Block Timestep (t) k Scaled MSE Explained Variance (%)

cond

down_block
0 10 0.6293 36.6

20 0.5466 44.8

0.5 10 0.6275 37.6
20 0.5510 45.1

1.0 10 0.4617 51.7
20 0.3767 60.5

mid_block
0 10 0.4817 50.5

20 0.4133 57.3

0.5 10 0.4802 50.9
20 0.4194 57.0

1.0 10 0.4182 56.4
20 0.3503 63.3

up_block
0 10 0.5540 44.0

20 0.4698 52.5

0.5 10 0.5414 45.3
20 0.4648 52.9

1.0 10 0.4177 57.7
20 0.3424 65.3

uncond

down_block
0 10 0.6306 36.4

20 0.5477 44.6

0.5 10 0.6364 36.9
20 0.5580 44.5

1.0 10 0.3874 58.6
20 0.3081 66.9

mid_block
0 10 0.4852 50.7

20 0.4161 57.6

0.5 10 0.4909 50.8
20 0.4277 57.0

1.0 10 0.3286 65.7
20 0.2613 72.6

up_block
0 10 0.5550 44.0

20 0.4701 52.5

0.5 10 0.5436 45.3
20 0.4653 53.3

1.0 10 0.2724 71.4
20 0.2115 77.7

In particular, we represent each concept by an associated list of objects, constituting a concept dictionary. The keys are
unique concept identifiers (CIDs) assigned to each of the concept vectors of the SAE. The values correspond to objects that
commonly occur in areas where the concept is activated. To build the concept dictionary (Figure 7), we first sample a set
of text prompts, generate the corresponding images using a diffusion model and extract the SAE activations for each CID
during generation. We obtain ground truth annotations for each generated image using a zero-shot pipeline, that combines
image tagging, object detection and semantic segmentation, resulting in a mask and label for each object in generated images.
Finally, we evaluate the alignment between our ground truth masks and the SAE activations for each CID, and assign the



Figure 7. Curating the concept dictionary: 1) We cache SAE activations for various time steps and blocks during image generation. 2)
We leverage a pipeline of image tagging, open-set object detection and promptable segmentation to annotate the generated image with
segmentation masks and corresponding object labels. 3) We find SAE activations that sufficiently overlap with the object masks. 4) We add
the overlapping object’s label to the concept dictionary under the matching SAE activation’s CID.

corresponding label to the CID only if there is sufficient overlap.
The concept dictionary represents each concept with a list of objects. In order to provide a more concise summary that

incorporates semantic information, we assign an embedding vector to each concept. In general, we could use any model that
provides robust natural language embeddings, such as an LLM, however we opt for a simple approach by assigning the mean
Word2Vec embedding of object names activating the given concept.

C.1. Experimental details
In all experiments, we leverage RAM [34] for image tagging, Grounding DINO [18] for open-set object detection and SAM
[14] for segmentation in our zero-shot annotation pipeline, following [23].

We sample 40k prompts from the LAION-COCO dataset from a split that has not been used to train the SAEs. We assign a
label to a specific CID if the IoU between the corresponding annotated mask and activation is greater than 0.5. We binarize the
activation map for the IoU calculation by first normalizing to [0, 1] range, then thresholding at 0.1.

We depict top 5 activating concepts, extracted from up_blocks.1.attentions.0, for generated images and their
corresponding concept dictionary entries in Figures 8 - 10.

D. Predicting final image composition
Leveraging the concept dictionary, we predict the final image composition based on SAE features at any time step (Figure
11), allowing us to gain invaluable insight into the evolution of image representations in diffusion models. Suppose that we
would like to predict the location of a particular object in the final generated image, but before the reverse diffusion process
is completed. First, given SAE features from a given intermediate time step, we extract the top activating concepts for each



(a) t = 1.0 (b) t = 0.0

Figure 8. Concept dictionary and visualization of the activation map for the top 5 activating concepts. Sample ID: 2000031

(a) t = 1.0 (b) t = 0.0

Figure 9. Concept dictionary and visualization of the activation map for the top 5 activating concepts. Sample ID: 2000061

spatial location. Next, we create a conceptual map of the image by assigning a word embedding to each spatial location based
on our curated concept dictionary. This conceptual map shows how image semantics, described by localized word embeddings,
vary spatially across the image. Given a concept we would like to localize, such as an object from the input prompt, we
produce a target word embedding and compare its similarity to each spatial location in the conceptual map. To produce a
predicted segmentation map, we assign the target concept to spatial locations with high similarity, based on a pre-defined



(a) t = 1.0 (b) t = 0.0

Figure 10. Concept dictionary and visualization of the activation map for the top 5 activating concepts. Sample ID: 2000062

threshold value. This technique can be applied to each object present in the input prompt (or to any concepts of interest) to
predict the composition of the final generated image.

E. Additional results on segmentation accuracy
We provide a comprehensive overview of the accuracy of predicted segmentations across different architectural blocks in
SDv1.4 in Figure 12.

We find that coarse image composition can be extracted from any of the investigated blocks, and from both cond and
uncond features even in the first reverse diffusion step. We consistently observe saturation by the middle of the reverse
diffusion trajectory. We note that the saturation is partially due to imperfect ground truth masks from our annotation pipeline
that can be less accurate than the masks obtain from the SAE features at late time steps. Overall, up_block provides the most
accurate, and mid_block the least accurate segmentations (due to the lower spatial resolution in the bottleneck). We observe
consistently lower segmentation accuracy based on uncond features. We hypothesize that uncond features may encode
more low-level visual information, whereas cond features are directly influenced by the text conditioning and therefore
represent more high-level semantic information.

F. Details of causal interventions
F.1. Manipulating image composition
We intercept mid_block activations of the diffusion model and edit them in the latent space of the SAE. Recall that the
contribution of the bottleneck transformer block at time t is given by ∆mid,t ∈ RH×W×d. Let Zmid,t ∈ RH×W×nf denote
the latents after encoding the activations with the SAE encoder Eθ . Let S denote the set of coordinates to which we would like
to restrict the object. Let Co be the set of CIDs that are relevant to object o. We wish to modifty the latents as follows:

∀c ∈ Co, Z̃mid,t[i, j, c] =

{
β, if (i, j) ∈ S

0, otherwise
(1)

where β is our intervention strength. However, decoding the modified latents directly is suboptimal as the SAE cannot
reconstruct the input perfectly. Instead, we modify the activations directly using the concept vectors. The modification in



Figure 11. Predicting image composition: 1) We cache SAE activations during the very first diffusion step
(or other time step of interest) and extract top activated concepts for each spatial location. 2) For each spatial
location, we fetch the associated objects from the concept dictionary and produce a conceptual embedding via
Word2Vec. 3) We compare the conceptual embedding at each location to the target word embeddings from the
input prompt and predict a segmentation map based on cosine similarity.

(a) down_block (b) mid_block (c) up_block

Figure 12. Accuracy of predicted segmentations based on SAE features from different architectural blocks. cond stands for text-conditioned
diffusion features, and uncond denotes null-prompt conditioning.

Equation (1) can be equivalently written as:

∆̃mid,t[i, j] =

{
∆mid,t[i, j] + β

∑
m∈Co

fm if (i, j) ∈ S

∆mid,t[i, j]−
∑

m∈Co
fm, otherwise

. (2)



β = 0.0 β = 1.0 β = 2.0 β = 4.0 β = 10.0 β = 20.0 β = 40.0

1

Figure 13. Effect of the intervention strength β. We intervene the concept #1314 (controlling cartoon look) of the SAE trained on
mid_block activations at t = 0.5. Prompts corresponding to images are drawn randomly from the validation split. From top to bottom
prompts are: ’A man playing with his dog in the park.’, ’The flywheel is being used to make an
automatic clutch.’, ’Cars and trucks driving on the highway with flames in the background.’

In our experiments, we observe that the same intervention strength β does not work well across different objects o. To
solve this, we introduce a normalization where the intervention at a spatial coordinate (i, j) is proportional to the norm of
the latent at that coordinate ∥Zmid,t[i, j]∥. Therefore, the effective intervention strength is βij = β ∥Zmid,t[i, j]∥. We apply
Equation (2) for 40% of the reverse diffusion (t ∈ [0.6, 1.0]) using the SAE trained on cond activations of mid_block
at t = 1.0. Although the SAE is trained only on a particular timestep, we observe that it generalizes to other timesteps
in the vicinity. We empirically observe that a significantly large value of β = 4000 is needed to successfully control the
spatial composition consistently. We hypothesize that the skip connections in the U-Net architecture and the features from the
null-text conditioning in classifier-free guidance reduce the effect of our interventions, as they provide paths that bypass
the intervention. Thus, a larger value of intervention strength is needed to mask the leakage effects.

F.2. Manipulating image style
Given a CID c related to the style of interest, we modify the activation at each spatial location as follows:

∆̃mid,t[i, j] = ∆mid,t[i, j] + βfc. (3)

Similar to Appendix F.1, we find that a standardization is necessary for β to work well across different choice of styles. We let
β to be adaptive to spatial locations and modify them as β̃ij =

∥Zmid,t[i,j]∥∑
i,j∥Zmid,t[i,j]∥β to alleviate this.

First, we target intervening during the first 40% of the reverse diffusion trajectory that corresponds to t ∈ [0.6, 1.0]. With
the new standardization, we find β = 8.0 to work well after a grid search. Next, we shift the intervention interval to the middle
stages of diffusion (t ∈ [0.3, 0.6]). We find β = 10.0 to work well in general. Figure 13 provides more intuition on the effect
of intervention strength β from Eq. (3) on controlling image style

G. Qualitative assessment of activations
We visualize the activation maps for top 10 (in terms of mean activation across the spatial dimensions) activating concepts for
generated samples in Figures 14 - 16 for various time steps and blocks. Based on our empirical observations, the activations
can be grouped in the following categories:
• Local semantics – Most concepts fire in semantically homogeneous regions, producing a semantic segmentation mask for a

particular concept. Examples include the segmentation of the pavement, buildings and people in Figure 14, the plate, food



items and background in Figure 15 and the face, hat, suit and background in Figure 16. We observe that these semantic
concepts can be redundant in the sense that multiple concepts often fire in the same region (e.g. see Fig. 15, second row
with multiple concepts focused on the food in the bowl). We hypothesize that these duplicates may add different conceptual
layers to the same region (e.g. food and round in the previous example). In terms of diffusion time, we observe that the
segmentation masks are increasingly more accurate with respect to the final generated image, which is expected as the
final scene progressively stabilizes during the diffusion process. This observation is more thoroughly verified in Section ??
and Figure 2a. In terms of different U-Net blocks, we observe that up_blocks.1.attentions.0 provides the most
accurate segmentation of the final scene, especially at earlier time steps.

• Global semantics (style) – We find concepts that activate more or less uniformly in the image. We hypothesize that these
concepts capture global information about the image, such as artistic style, setting or ambiance. We observe such concepts
across all studied diffusion steps and architectural blocks.

• Context-free – We observe that some concepts fire exclusively in specific, structured regions of the image, such as particular
corners or bordering edges of the image,irrespective of semantics (see e.g. the last activation in the first row of Figure 14).
We hypothesize that these concepts may be a result of optimization artifacts, and are leveraged as semantic-independent
knobs for the SAE to reduce reconstruction error. Specifically, if the SAE is unable to "find" k meaningful concepts in
the image, as encouraged by the training objective, it may compensate for the missing signal energy in these context-free
directions.

H. Context-free activations
We observe the emergence of feature directions in the representation space of the SAE that are localized to particular, structured
regions in the image (corners, vertical or horizontal lines) independent of high-level image semantics. We visualize examples
in Figures 17 - 18. Specifically, we find concept IDs for which the variance of activations averaged across spatial dimensions
is minimal over a validation split. We depict the mean and variance of such activations and showcase generated samples that
activate the particular concept. We observe that these localized activation patterns appear throughout the generative process
(both at t = 1.0 in Figure 17 and at t = 0.0 in Figure 18). Moreover, the retrieved activating samples typically do not share
common semantic or low-level visual features, as demonstrated by the sample images. We hypothesize that these feature
directions may be used by the SAE as "registers" for context-independent information.

I. Visualization of top dataset examples
Top dataset examples for a concept ID c is determined by sorting images based on their average concept intensity γc where the
averaging is over spatial dimensions. Formally (definition is taken from [30]), for a transformer block ℓ and timestep t, we
define γc as:

γc =
1

HW

∑
i,j

Zℓ,t[i, j, c].

In Figures 19 - 29, we provide top activated images for various concept IDs and for various timestep t’s.



Figure 14. Visualization of top activating concepts in a generated sample. Concepts are sorted by mean activation across spatial locations
and top 10 activation maps are shown. Each row depicts a different snapshot along the reverse diffusion trajectory starting from pure noise
(t = 1.0) and terminating with the generated final image (t = 0.0). Note that each row within the same column may belong to a different
concept, as concepts are not directly comparable across different diffusion time indices (separate SAE is trained for each individual timestep).
Sample ID: 2000018.



Figure 15. Visualization of top activating concepts in a generated sample. Concepts are sorted by mean activation across spatial locations
and top 10 activation maps are shown. Each row depicts a different snapshot along the reverse diffusion trajectory starting from pure noise
(t = 1.0) and terminating with the generated final image (t = 0.0). Note that each row within the same column may belong to a different
concept, as concepts are not directly comparable across different diffusion time indices (separate SAE is trained for each individual timestep).
Sample ID: 2000035.



Figure 16. Visualization of top activating concepts in a generated sample. Concepts are sorted by mean activation across spatial locations
and top 10 activation maps are shown. Each row depicts a different snapshot along the reverse diffusion trajectory starting from pure noise
(t = 1.0) and terminating with the generated final image (t = 0.0). Note that each row within the same column may belong to a different
concept, as concepts are not directly comparable across different diffusion time indices (separate SAE is trained for each individual timestep).
Sample ID: 2000042.



Figure 17. We plot the mean and variance of activations, extracted at t = 1.0, for concepts with lowest average variance across spatial
locations. We find concepts that fire exclusively at specific spatial locations. We depict generated samples that maximally activate for the
given concept.



Figure 18. We plot the mean and variance of activations, extracted at t = 0.0, for concepts with lowest average variance across spatial
locations. We find concepts that fire exclusively at specific spatial locations. We depict generated samples that maximally activate for the
given concept.
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Figure 19. Top activating dataset examples for the concept ID 10 belonging to the SAE trained on the cond activation of mid_block at
t = 1.0.
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Figure 20. Top activating dataset examples for the concept ID 13 belonging to the SAE trained on the cond activation of mid_block at
t = 1.0.
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Figure 21. Top activating dataset examples for the concept ID 49 belonging to the SAE trained on the cond activation of mid_block at
t = 1.0.
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Figure 22. Top activating dataset examples for the concept ID 2787 belonging to the SAE trained on the cond activation of mid_block at
t = 1.0.
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Figure 23. Top activating dataset examples for the concept ID 524 belonging to the SAE trained on the cond activation of mid_block at
t = 0.5.
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Figure 24. Top activating dataset examples for the concept ID 1314 belonging to the SAE trained on the cond activation of mid_block at
t = 0.5.
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Figure 25. Top activating dataset examples for the concept ID 2137 belonging to the SAE trained on the cond activation of mid_block at
t = 0.5.
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Figure 26. Top activating dataset examples for the concept ID 4972 belonging to the SAE trained on the cond activation of mid_block at
t = 0.0.

1

Figure 27. Top activating dataset examples for the concept ID 0 belonging to the SAE trained on the cond activation of mid_block at
t = 0.0.
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Figure 28. Top activating dataset examples for the concept ID 4979 belonging to the SAE trained on the cond activation of mid_block at
t = 0.0.
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Figure 29. Top activating dataset examples for the concept ID 86 belonging to the SAE trained on the cond activation of down_block at
t = 0.0.
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