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Abstract

Conventional depth-free multiview datasets are captured
using a moving monocular camera without metric calibra-
tion. The scales of camera positions in this monocular set-
ting are ambiguous. Previous methods have acknowledged
scale ambiguity in multiview data via various ad-hoc nor-
malization pre-processing steps, but have not directly an-
alyzed the effect of incorrect scene scales on their appli-
cation. In this paper, we seek to understand and address
the effect of scale ambiguity when used to train generative
novel view synthesis methods (GNVS). The generative na-
ture of these models captures all aspects of uncertainty, in-
cluding any uncertainty of scene scales, which act as nui-
sance variables for the task. We study the effect of scene
scale ambiguity in GNVS when sampled from a single image
by isolating its effect on the resulting models and, based on
these intuitions, define new metrics that measure the scale
inconsistency of generated views. We then propose a frame-
work to estimate scene scales jointly with the GNVS model
in an end-to-end fashion. Empirically, we show that our
method reduces the scale inconsistency of generated views
without the complexity or downsides of previous scale nor-
malization methods. Further, we show that removing this
ambiguity improves generated image quality.

1. Introduction
A central task of visual perception is interpreting the 3D
structure of 2D images, as geometric information is lost in
the perspective projection process. Multiview vision can
recover substantial 3D structure, but cannot obtain metric
geometry, due to the “scale ambiguity” inherent to images
[10, 12] (see Fig. 1). Similarly, an important task in visual
perception for robotics, monocular visual odometry (VO),
also struggles with scale ambiguity [4, 11, 21]. The scale
ambiguity problem, therefore, naturally appears in most real
datasets using visual methods for camera pose estimation.

Most multiview image datasets used by learning-based
methods, e.g., RealEstate10K [38], obtain camera poses

Figure 1. Scale ambiguity and inconsistency in GNVS. (Top)
Two novel views are independently sampled using the same con-
ditioning and camera motion, ∆x. Samples exhibit different dis-
parities due to uncertainty over scene scale. Here, we depict the
samples’ plausible top down scene layouts in the boxes. (Bot-
tom) Additional samples and scenes in the same setting are shown,
where a salient edge is highlighted to show the different disparities
in the generated views.

via monocular SLAM systems, such as ORBSLAM [20]
or COLMAP [26], yielding consistent relative poses but
ambiguous absolute scale. To handle the scale inconsis-
tencies across scenes, the authors “scale-normalized” each
sequence by scaling a specific depth quantile to a reason-
able value for their method. This ambiguity complicates
many 3D computer vision tasks, such as novel view synthe-
sis (NVS), where uncalibrated data introduces variability in
the perceived sizes and distances of objects.
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Figure 2. SFV metric overview. From n generated frames, we compute optical flows between the conditioning image and each output.
Patches outlined by squares illustrate masking: red vectors (masked) show pixels leaving the view; blue vectors (unmasked) indicate
cycle-consistent motion. Masked flows are then normalized by the mean magnitude of unmasked flows, f̄ .

NVS, a long-standing challenge in computer vision and
graphics (e.g., [1, 7, 15]), can be a highly ambiguous task
due to unobserved elements within scenes. To handle such
uncertainties, generative NVS (GNVS) models have been
devised (e.g., [16, 22, 23, 32]), where most recent methods
use diffusion models [5, 9, 17, 18, 30, 34–36]. A GNVS
model, unlike NeRFs [2, 19, 36] and 3DGS [14], faces
an under-determined scenario: given a single observed im-
age and a trajectory of camera parameters, it must gener-
ate novel views for that camera path. Inconsistent scales in
the training data create uncertainty since the model can no
longer assume a fixed size for objects. Existing GNVS mod-
els show this with high entropy in generated views: e.g., two
samples of a novel viewpoint can place the same object at
different positions despite same camera movements.

Existing methods, e.g., [25, 29, 31] perform scale esti-
mation or normalization as a fixed preprocessing step, based
on heuristics applied to the scene and camera geometries.
As a result, errors in the initial scales cannot be corrected,
valuable training data is potentially sacrificed, and the re-
sulting GNVS model learns to reproduce this uncertainty
in scale. In contrast, our approach learns scene scales dur-
ing the training process, adapting and correcting them via
the GNVS task loss. In terms of evaluation, NVS metrics
neither capture the statistical entropy induced by the scale
variability nor measure the inconsistencies in scale among
the generated views. FID [13] compares image distributions
without considering metric scale, while reconstruction met-
rics such as LPIPS[37] and PSNR are quickly dominated
by other sources of error, including differences in semantic
content. In contrast, Structure-from-Motion (SfM)-based
metrics [31] and TSED [34] are inherently scale-invariant.

In this work, we (i) identify and quantify the issue of
scale uncertainty in the GNVS task, and (ii) propose a sim-
ple learning-based method to curtail its impact by optimiz-
ing a per-scene scale jointly with the generative model.

2. Methods
2.1. Scale Learning
Let S = {si}Ni=1 be the per-scene scales for N scenes,
which we aim to learn. These scene scales modify the cam-
era extrinsics for each frame in a scene by scaling the trans-
lation component of the pose. That is, for each frame be-
longing to scene i, the translation vector is scaled by the cor-
responding scene scale si. We assume the original camera
translations, as determined by the applied calibration and
normalization procedures, provide a reasonable initializa-
tion. To ensure scales remain positive, we use an exponen-
tial parameterization. This formulation allows the model to
adjust scene-wise scales within a moderate and controlled
range, centered around the assumed base scale.

The scales S are learned jointly with the parameters, θ,
of a latent diffusion model. We use PolyOculus [35], a
GNVS model based on a latent diffusion process [24]. The
training loss follows the standard form used in denoising
diffusion models, where noise is predicted from noisy la-
tent codes and corresponding scaled camera poses.

2.2. Quantifying Scale Variability
Sample Flow Variability. An overview of the SFV metric
is given in Fig. 2. For a given condition image, we generate
a set of n images conditioned on the same frame with the
same camera motion between the conditioned and generated
frames. We compute the forward optical flow from the con-
ditioned image and each generated image. We use RAFT
[28] to compute optical flow. To avoid using parts of the
image where correspondences cannot be made (occlusions
and disocclusions), we compute a mask, M , of the image
by checking for cycle consistency [3, 6, 27] of the forward
and backward optical flows. To avoid our metric from being
dominated by other sources (geometry, camera motion), we
normalize the optical flow of each scene. Specifically, we
normalize the forward optical flows with the average mag-



Figure 3. Edge heatmaps. We visualize the average Sobel filter responses of multiple samples generated with the same conditioning
information to highlight distinct regions of the scene structure. Consistency in edge locations results in more clarity in the edge heatmaps,
which indicates a reduction in randomness caused by scale ambiguity. Note that PolyOculus samples are quite noisy in terms of edge
locations, and scale learning helps stabilize edge locations.

Figure 4. Examples of per-pixel optical flow MAD maps. The
darker the pixel, the lower the variation of optical flow in that pixel,
indicating a more consistent scale among the generated samples.
The entropy in scale can also be seen by comparing the generated
frames, e.g., the width of the door in the second row.

nitude of flows at unmasked pixels, f̄ .
Finally, to be robust to outliers in optical flow, we

use the per-pixel median absolute deviation (MAD) across
all n masked normalized flows. The SFV of a single
conditioning image and desired camera pose is, SFV =
medianp∈MMAD[p], where the median is computed over
pixel locations, p, and M is the cycle consistency mask. We
average the SFV of different conditioning images and cam-
era poses to create a final metric. Visualizations of the MAD
maps as heatmaps and SFV values for different scenes are
shown in Fig. 4.

Scale-Sensitive Thresholded Symmetric Epipolar Dis-
tance. TSED measures geometric inconsistencies be-
tween pairs of images using epipolar geometry. By de-
sign, TSED is insensitive to changes in scene scale between
a generated and conditioning view because 2D correspon-
dences move along epipolar lines in respect to changes in
scene scale, yielding no detectable errors.

Instead, we make TSED able to detect scale inconsis-
tencies by measuring the TSED between two independently
generated views that move in perpendicular directions. Dur-

ing generation, the model can “choose” different scales,
which creates an inconsistency in the epipolar geometry be-
tween the generated views. By evaluating TSED only on the
generated views, TSED becomes sensitive to scene scale.

To measure this, we compute a metric as follows: for
each axis (x, y, z), we apply a fixed-magnitude camera trans-
lation in a random direction and generate a corresponding
image. Only translations are used, since rotations are unaf-
fected by scale. We then sample pairs of generated views
along the various axes and compute the percentage of con-
sistent pairs using TSED [34]. Averaging this across many
conditioning views yields the Scale-Sensitive Thresholded
Symmetric Epipolar Distance, or SS-TSED score.

3. Experiments
We explore a variety of methods to evaluate the reduction
of scale uncertainty in our scale learning method. We use
SFV and SS-TSED as metrics for evaluating the amount of
scale variability a model exhibits in its generations. Next,
we evaluate the effect of scale learning on image quality in
GNVS using reconstruction metrics.

3.1. Experimental Setup
Datasets. We train and evaluate on the RealEstate10K
(RE10K) [38] dataset. In addition to the raw camera poses
provided by the dataset, we also consider poses calibrated
using metric monocular depth estimators (MS) [33] as a
representative method for existing ad-hoc scale estimation
methods [31]. We set the scale to 1.0 for scenes with unreli-
able scale estimates, resulting in ∼30% of the metric scales
staying the same as those provided by RE10K and use both
sets of poses to act as reference scales from which we apply
our scale learning.
GNVS Model. We use PolyOculus [35] as our baseline
GNVS model. To compare the effect of scale learning, we
train two models for each reference scale, one with and one
without scale learning. All models are trained from scratch
for 900 epochs. For models using scale learning, we initial-
ize the learnable parameters, si, to one. We use different
optimizers for the scale factors and the denoising network.



Method LPIPS ↓ PSNR ↑
1 2 3 4 1 2 3 4

PolyOculus 0.037 0.045 0.053 0.061 29.98 27.38 26.32 25.21
PolyOculus + MS 0.037 0.046 0.052 0.060 29.10 27.61 26.56 25.56
ScaleLearned 0.035 0.042 0.049 0.056 29.50 28.13 27.17 26.17
ScaleLearned + MS 0.034 0.041 0.048 0.055 29.62 28.22 27.24 26.24

Table 1. Reconstruction metrics. Computed on the test set for
one to four frames ahead. Scale learning shows improvements in
reconstrunction metrics.
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Figure 5. SFV and SS-TSED evaluations. (Top) Average SFV
values for different translation magnitudes. (Bottom) SS-TSED
consistent pair percentages across Terror thresholds. Scale learn-
ing improves performance with both metrics, further enhanced by
combining with metric scales.

3.2. Scale Variability as Apparent Motion
The variance in motion among novel views with the same
generation parameters can be made more salient by averag-
ing Sobel filter [8] outputs from multiple samples to form
heatmaps. In Fig. 3, as expected, we see that the PolyOcu-
lus baseline model produces samples with large amounts of
scale variability, where magnified regions show edges that
become blurred, appearing in multiple locations between
the samples. In contrast, scale learned models show sharper
heatmaps. Qualitative inspection of the MAD heatmaps in
fig. 4 also show the ScaleLearned models have darker maps
with lower SFVs due to lower per-pixel MAD, reflecting
lower optical flow variation.

For quantitative evaluations, we compute SFV using 200
randomly selected test images. For each image, we select
poses at various distances from the observed view along
ground-truth camera trajectories to evaluate scale variation
at multiple magnitudes of camera motion. We select views
with distances that match the closest to this set of magni-
tudes: T = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The magni-
tudes chosen are relatively small to avoid introducing addi-
tional variance when generating new scene content. Finally,
for each generated and observed view, we draw 10 samples
to evaluate models’ scale uncertainty.

As shown in Figure 5, models incorporating scale learn-
ing outperform those without it in terms of SFV across a

range of translation magnitudes, demonstrating that learn-
ing scale during training reduces motion variation between
the conditioning and generated frames. While metric-depth
scaled camera poses help reduce sample scale variance
(PolyOculus + MS), ScaleLearned model achieves signifi-
cantly better performance, indicating that the scale-learning
approach is more effective than metric-depth estimation in
preserving scale consistency. Further improvements are ob-
served when using metric-depth scales as reference scales
in scale learning (ScaleLearned + MS).

3.3. Scale Variability as Epipolar Errors
We compute SS-TSED over 200 images in the test set and
for each image, we sample 100 pairs. The results in Fig. 5
demonstrate that incorporating scale learning significantly
improves epipolar consistency across both reference scale
cases. Using metric-depth estimated scales also enhances
SS-TSED, and further performance gains are achieved by
combining scale learning with this approach.

3.4. Scale Variability as Reconstruction Errors
Reconstruction errors in GNVS can be mostly attributed to
the misalignment of scene content due to different scene
scales. To mitigate the issue and make reconstruction met-
rics more sensitive to scale variability, we propose a test-
time scale estimation procedure. Specifically, we freeze the
model weights and only learn the scales of 1500 random test
scenes with the diffusion loss used in training. This pro-
cedure should align the scale of each test scene with each
models’ internal expectation of scale, thus mitigating re-
construction errors caused by misaligned content. For these
reasons, we apply test-time scale estimation for all models,
even those that do not use scale learning during training.
The same trend found in our previous experiments is also
found here in Table 1. Scale learning consistently improves
reconstruction, and performs slightly better when applied in
conjunction with metric-depth calibrated reference scales.

4. Conclusion and Discussion
In this paper, we addressed the challenge of scale ambigu-
ity in GNVS models. We first demonstrated the problem,
showing that scale ambiguities present in multiview datasets
manifest in the conditional image distributions learned by
GNVS models. To quantify scale variability in a GNVS
model, we defined two metrics based on optical flow and
epipolar geometry. We further introduced a new method to
learn scene scales by optimizing them during GNVS model
training. We empirically showed that our learning-based
method effectively reduces the scale ambiguities in a trained
GNVS model. Further, we showed that image quality met-
rics were improved. Our approach offers a simple yet effec-
tive general solution that requires no preprocessing, and our
metrics evaluate scale consistency in GNVS models.
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