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Figure 1. VideoHandles edits 3D object composition in videos of static scenes. Solid axes represent the original 3D position and dotted
axes the user-provided target position. The edit plausibly updates effects like the reflection of the wine glass and handles disocclusions like
the lamp behind the book pile that is exposed by the edit. In addition to generated videos, we can also edit real (non-generated) videos by
inverting the video into its corresponding latent, as shown on the right.

Abstract

Generative methods for image and video editing leverage
generative models as priors to perform edits despite in-
complete information, such as changing the composition
of 3D objects depicted in a single image. Recent meth-
ods have shown promising composition editing results for
images. However, in the video domain, editing methods
have focused on editing objects’ appearance and motion,
or camera motion. As a result, methods for editing ob-
ject composition in videos remain largely unexplored. We
propose VideoHandles as a method for editing 3D object
compositions in videos of static scenes with camera motion.
Our approach enables the editing of an object’s 3D posi-
tion across all frames of a video in a temporally consistent
manner. This is achieved by lifting intermediate features of
a generative model to a 3D reconstruction that is shared
between all frames, editing the reconstruction, and project-

*Work done during an internship at Adobe Research.

ing the features on the edited reconstruction back to each
frame. To the best of our knowledge, this is the first gener-
ative approach to edit object compositions in videos. Our
approach is simple and training-free, while outperforming
state-of-the-art image editing baselines.

1. Introduction

We propose VideoHandles as a generative approach to edit
the object composition in a video of a static scene. Our
approach enables the editing of an object’s 3D position in
a video, resulting in a plausible, temporally consistent edit
that preserves the identity of the original object. To the best
of our knowledge, ours is the first generative approach that
allows editing the object composition in a video. Given a
pretrained flow-based video generative model, we present a
novel method to edit the intermediate features from the gen-
erative model’s network in a temporally consistent manner.
Specifically, we lift the intermediate features of each frame
to a common 3D reconstruction, effectively treating them



as latent textures. We then edit the 3D location of an object
using 3D translations or rotations, and project the features
back to their corresponding frames. We use such projected
features as guidance during the generative process to create
a plausible edited video. Our approach is simple and does
not require any training or finetuning that risks biasing the
distribution of the generative model.

We evaluate our method on several generated and cap-
tured videos. As there are no existing methods that are
specialized to editing the 3D object composition in videos,
we compare to several image editing baselines that can be
applied in a per-frame manner. We evaluate the results in
terms of plausibility, temporal consistency, identity preser-
vation, and adherence to the target edit. In addition to a
large number of qualitative comparisons, we also conduct
a user study. The results show a clear preference for our
method in terms of plausibility and temporal consistency,
while our method is at least on par with, or slightly bet-
ter than image editing baselines in identity preservation and
edit adherence. Finally, a quantitative evaluation further
supports these findings.

2. VideoHandles: A 3D-Aware Video Editing
Method

Consider a static input video Xsrc ∈ Rn×h×w×3, where
objects remain stationary and only the camera moves. Our
goal is to apply a 3D transformation to an object selected
by the user in the first frame while preserving the identity
of the input video, realism, and temporal consistency. See
Figure 2 for an architecture overview.

To ensure that transformations in each frame of a video
align with those in other frames, we define a 3D space in
which a point cloud P src = {p(j)}Jj=1 represents the 3D
scene in the video with a shared coordinate system across
all frames. A transformation is performed in this shared
3D space, denoted by T : R3 → R3, with each input
frame x

(i)
src modeled as a 2D rendering of P src from the i-

th view. Specifically, we reconstruct P src and estimate a
camera pose for each frame from Xsrc using DUST3R [5].
By leveraging the reconstructed 3D scene from Xsrc, we
define a 3D-aware warping function in the 2D space of each
frame.

However, directly warping pixel colors often produces
unrealistic results due to inaccuracies in the reconstructed
3D scene and fails to account forcontextual effects like
shadows or relightning. Inspired by DiffusionHandles [3],
we instead warp the features of a pre-trained video gener-
ative model, using them as guidance during the generative
process.

2.1. 3D-Aware Warping Function
We first describe how to obtain a 3D-aware warping func-
tion in the 2D space of each frame. Given a set of 2D co-
ordinates ΩH,W = {(v, u) | v ∈ [0, H), u ∈ [0,W )}, the
connection between the 3D space and the i-th 2D frame is
established through the projection function f (i) : R3 →
ΩH,W , which is defined by the i-th camera pose. Let
B(1) : ΩH,W → {0, 1} denote the 2D binary mask of an
object selected by users in the first frame. Based on the 2D
object mask in the first frame B(1), we first partition P src,
the point cloud reconstructed from the input video Xsrc, as
follows:

P f = {p ∈ P src | B(1)(f (1)(p)) = 1}, (1)
P b = P src \ P f , (2)

where P f consists of points whose projections lie within
the 2D masked region defined by B(1), and P b denotes the
remaining points representing the background. By applying
a 3D transformation T to P f alone, we construct a rough
target 3D scene represented as a point cloud:

P tgt = T P f ∪ P b. (3)

The lifting function g(i)src : ΩH,W → R3 takes a 2D coordi-
nate u = (v, u) as input and returns the 3D point in P src
closest to the i-th camera from among the points projected
close to u:

g(i)src (u) = argmin
p∈P

(i)
src,u

z(i)(p), (4)

where P (i)
src,u = {p ∈ P src | ∥f (i)(p) − u∥1 < ϵ} repre-

sents the set of 3D points that are projected close to u and
z(i)(p) denotes the distance of point p from the i-th cam-
era. Similarly, g(i)tgt (u) returns the 3D point in P tgt closest to
the i-th camera from among the points projected close to u.
Using the functions g(i)src and g(i)tgt , we define an occlusion-

aware foreground point cloud P
(i)
f ⊆ P f for each frame as

follows:

P
(i)
f = {g(i)src (u)} ∩ {T −1g

(i)
tgt (u)} ∩ P f , (5)

where u ∈ ΩH×W . It consists of foreground points that are
not occluded by the background either before or after the
transformation. Using this 3D information, we compute a
2D warping function W(i) : ΩH,W → ΩH,W as follows:

W(i)(u) =

{
f (i)

(
T −1g

(i)
tgt (u)

)
, if g(i)tgt (u) ∈ P

(i)
f

u, otherwise.
(6)

This warping function gives us the corresponding coordi-
nate in the source image for any coordinate in the target im-
age. All coordinates that do not project to the edited fore-
ground point cloud remain unchanged. We denote warp-
ing a 2D signal X : ΩH,W → RC as (W(i) ∗ X )(u) :=
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Figure 2. VideoHandles Architecture. We use the intermediate features Ψsrc of a video generative model to represent the identity of
objects in a source video. Given a 3D transformation of an object, we can use a 3D reconstruction of the scene to warp the intermediate
features consistently across frames. Guiding the video generator with these warped features Ψtgt gives us a an edited video where the
object is transformed, while also maintaining the plausibility of effects like shadows and reflections.

X (W(i)(u)). Similarly, we denote its application to a ten-
sor X ∈ R···×H×W×... as W(i)∗X . HereH andW are the
two spatial tensor dimensions that the warping is applied to
and the ellipses denote arbitrary additional dimensions. The
tensor is sampled at non-integer coordinates using linear in-
terpolation.

2.2. Warping Video Features
The DiT architecture [4] of OpenSora, which we used for
our main experiments, alternates layers that perform spatial
self-attention, temporal self-attention, cross-attention to the
prompt, and feed-forward computations.

Let Ql(Zt),Kl(Zt),V l(Zt) ∈ RM×H×W×d be the
query, key, and value features of the l-th self-attention layer
extracted from vωθ (Zt, t, y), where M denotes the number
of frames and d is the feature dimension. We use their con-
catenation from all layers as our extracted feature Ψ:

Ψ(Zt) = [Ql(Zt) ∥ Kl(Zt) ∥ V l(Zt)]
L
l=1. (7)

Let Ψ(i)(Zt) ∈ RH×W×D denote the feature for frame i,
whereD is the total dimensionality of the feature. Applying
the previosuly defined warping function, given the latent of
the input video Zsrc

t , its warped feature is defined as Ψ(i)
tgt :=

W(i) ∗Ψ(i)(Zsrc
t ).

2.3. Warping-Based Guided Generative Process

To guide the generation process of Zt with Ψ
(i)
tgt (Zt), we

use an energy-guided generative process [1]. Given an en-
ergy function G(Zt), the gradient of G is injected at each
step of the generative process, steering it towards minimiz-
ing the energy function:

Zt+∆t = Zt +∆t · vωθ (Zt, t, y) + ρ∇Zt
G(Zt). (8)

Below, we describe our specific design of G to edit object
compositions in videos.

Object Transformation Energy. Let M (i)
src ,M

(i)
tgt ∈

RH×W denote the occlusion-aware 2D masks of the se-
lected object before and after the transformation:

M (i)
src (u) :=

{
1, if u ∈ {f (i)(p) | p ∈ P

(i)
f },

0, otherwise.
, (9)

M
(i)
tgt := W(i) ∗M (i)

src , (10)

where u ∈ ΩH×W . To transform the selected object in the
video, we define the object transformation energy Go(Zt)
as follows:

M∑
i=1

∥∥∥M (i)
tgt ⊙

(
Ψ

(i)
tgt −Ψ(i)(Zt)

)∥∥∥2
2
, (11)

where ⊙ is the element-wise product. This function mea-
sures the discrepancy between the current features Ψ(i) and
the target features Ψ(i)

tgt within the region of the edited object

M
(i)
tgt .

Background Preservation Energy. To further preserve
background details, we define an additional energy func-
tion called the background preservation energy Gb(Zt) as
follows:

∥ψMHW (M b ⊙Ψtgt)− ψMHW (M b ⊙Ψ(Zt))∥22 , (12)

where ψMHW denotes the average over time and spatial di-
mensions, and M

(i)
b = max((1 − M (i)

src − M
(i)
tgt , 0) is the

background mask. This function measures the discrepancy
between the sums of the features in the background region.
Unlike Go, Gb compares only the averages of the features,
allowing the guidance of Gb to facilitate appropriate context
changes according to the new object position, such as new
shadows or reflections.
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Figure 3. A qualitative comparison with other baselines. The examples show that ours best demonstrates plausibility by avoiding object
duplication, adjusting shadows properly, and maintaining consistent outputs across frames, desipte warping errors, as illustrated in the
direct frame warping outputs (column 2).
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Figure 4. User study results on the plausibility, identity preservation, and edit coherence of the edited videos. Each bar pair shows
user preferences, with the green bar for our method and the other for the baseline, along with 95% confidence intervals. We also include a
comparison with the input video to represent the upper bound of plausibility.

3. Experiments
Experiment setups. For evaluation, we generate 27 input
videos to be edited, each with a resolution of 320×320 and
51 frames. In the absence of prior work on modifying 3D
object composition in videos, we compare our method to
DiffusionHandles [3], the state-of-the-art method for com-
position editing in 2D images. We also compare against
direct frame warping, which directly warps RGB values us-
ing the warping function. Additionally, we introduce an im-
proved variant of the direct frame warping, whic refines the
warped video using SDEdit [2].

Results. Qualitatively, our method successfully edits ob-
ject composition in videos while making appropriate con-
textual adjustments, such as the new reflection beneath the
wine glass in Figure 1 and the new shadows beneath the
transformed car, apple, and vase in rows 2, 3, and 5 of Fig-
ure 3, respectively. In comparison, DiffusionHandles [3]
(the fourth column in Figure 3) alters the identity of objects
or the background across different frames, as seen in the
second row, and frequently duplicates objects, as shown in
the first row. These failures are more evident in the videos
shown in our project page. Direct frame warping (the sec-
ond column) and its refined one by SDEdit [2] (the third
column) also typically produce visual seams (second row)
and implausible objects (fourth row) due to inaccuracies in

warping.
Due to the lack of standard metrics for video editing eval-

uation, we conducted a user study assessing plausibility,
identity preservation, and edit coherence. Figure 4 shows
human preferences when participants were presented with
two videos–one generated by our method and the other by
a competing method–along with the input video, and were
asked to choose the better one based on each criterion. The
results show that our method is preferred over all base-
lines across all criteria by significant margins. Notably,
our method achieved a preference of 100% for plausibility
compared to DiffusionHandles [3], and 75% and 57% for
identity preservation and edit coherence compared to the
SDEdit [2] output of the direct frame warping.

4. Conclusion and Limitations
We have presented VideoHandles, the first method that
leverages the prior of video generative models for editing
object composition in videos. Experimental results, in-
cluding a user study, demonstrate that VideoHandles out-
performs per-frame editing methods in terms of plausibil-
ity, identity preservation, and edit coherence. Despite the
promising results, the performance of our method is still
constrained by the capabilities of video generative models.
In future work, we aim to explore the editing of videos with
dynamic scenes.
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