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Figure 1. Examples of different quality scores assigned to 3D
models.

Abstract

This paper presents Objaverse++, a curated subset of
Objaverse enhanced with detailed attribute annotations.
To address the prevalence of low-quality models in
Objaverse[3 ], human experts manually annotate 10,000 3D
objects with quality and characteristic attributes. Then, we
trained a neural network capable of annotating the tags for
the rest of the Objaverse dataset. We show that models
trained on a quality-focused subset achieve better perfor-
mance than those trained on the larger Objaverse dataset in
image-to-3D generation tasks. In addition, our experiments
show that the higher the data quality, the faster the training
loss converges. These findings suggest that careful curation
and rich annotation can compensate for the raw dataset
size, potentially offering a more efficient path to develop
3D generative models. We release our enhanced dataset of
approximately 790,000 curated 3D models ' > to facilitate
further research in 3D computer vision and aim to extend
our annotations to cover the entire Objaverse dataset.
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1. Related Work

The generation of 3D models has been an important re-
search topic for years. Early 3D generation research
was influenced by 2D text-guided generation, starting with
GAN-based approaches like 3D-GAN [13]. After the
introduction of Contrastive Language-Image Pre-Training
(CLIP) [11] in 2021, several works adapted CLIP-based
2D generation methods to the 3D space [5, 8, 9]. Dream-
fields [5] and DreamFusion [10] pioneered a new era of
pre-trained text-to-image models for 3D generation through
Score Distillation Sampling (SDS), followed by subsequent
diffusion-based works [1, 6,7, 12].

The emergence of large-scale 3D datasets has been cru-
cial for advancing 3D vision and generation tasks. Obja-
verse [3] represents a significant milestone in this domain,
providing over 800,000 annotated 3D objects under Cre-
ative Commons licenses. As a comprehensive collection
widely used by the research community, Objaverse still has
limitations such as a lack of high-quality, texture-rich ob-
jects valuable to train texture generation models.

2. Methods

We manually annotated 10,000 3D objects from Objaverse
with quality scores and additional binary traits and trained a
neural network capable of annotating the rest of the dataset.

Our data labeling follows a systematic multistage anno-
tation and validation process. During the preliminary as-
sessment phase, we consulted artists to determine the essen-
tial components of our dataset and randomly sampled 1,000
objects for evaluation. Building on these initial insights,
we develop comprehensive labeling rubrics that standardize
the evaluation process. Then, our human annotators man-
ually annotated 10,000 objects with quality and aesthetic
tags. Using these data, we trained an annotation network
that classifies models and outputs the quality and aesthetic
tags based on 2D-rendered multiviews.



2.1. Annotation Tags

2.1.1. Quality and Aesthetics Score

We define quality score as a metric to tell how useful a 3D
object is for machine learning training. We assume a neural
network for 3D-related tasks may want to learn two aspects:
the semantic meaning of the geometric shape and the color
information from the surface texture. The following are the
enumeration values for the quality annotation.

* Low Quality: No semantic meaning. Specifically, if the
annotators are not able to identify the object, or if the ob-
ject is corrupted, it will fall under this category.

* Medium Quality: The object is identifiable, but missing
the basic material texture and color information. Items
that are single-colored by nature, for example, a garden
statue, are still considered as having a texture.

* High Quality: High Quality indicates an acceptable qual-
ity with a clear identity of the object. The object is prop-
erly textured with some material and color details.

* Superior Quality: The object is of excellent quality with
high semantic clarity. The object is professionally tex-
tured with strong aesthetic harmony. This type of object
can be used in specific gaming scenario setups without a
sense of violation.

A rubric and various samples, as shown below and in
Fig.1 are provided to human annotators to determine the
score of a 3D model from Objaverse. Note that the quality
score is meant to guide researchers and does not necessarily
conclude the artistic value of the 3D objects.

2.1.2. Binary Traits

In addition to the quality score on a linear scale, our Obja-

verse++ annotates several binary tags for each 3D object.

» Transparency: Identifies models with see-through parts,
where some areas allow visibility through objects in front
of them. Entirely opaque objects do not have this tag.
Some 3D generation algorithms rely on 2D multiviews
and may not handle transparent parts properly.

* Scene: Identifies whether the model represents a sce-
nario or an environment, rather than a standalone object.
Since scene generation [2, 14] and object generation dif-
fer greatly in algorithms and training data needs, this tag
will make an important distinction.

e Single Color: Tags models that are unintentionally
monochromatic, meaning that they consist of only one
color without any shading, texture, or other visual varia-
tion. Models with deliberate monochromatic design (e.g.,
a sculpture), shading, or texture do not receive this tag.
This tag filters out 3D objects that are meaningful for
learning texture generation.

¢ Not a Single Object: Marks models that consist of mul-
tiple separate components rather than a single unified ob-
ject. The tag refocuses on model learning for the genera-
tion and understanding of single objects.

* Figure: Indicates if the model represents a character, per-
son, or figure. The tag creates a subset of data for poten-
tial training in character generation.

Note that a 3D model could own multiple binary tags.

2.2. Annotation Network

The data distribution of binary tags in the human-annotated
training dataset is presented in Fig.9 in Supplement Mate-
rials. To scale our approach to cover a larger portion of the
Objaverse dataset, we develop and train a 3D model classi-
fier using our manually annotated data.

2.2.1. Classifier Architecture

The 3D object classifier uses a multiview approach, com-
bining convolutional and recurrent neural networks with
an attention mechanism, enhanced by object-specific meta-
data. The training data includes 40 screenshots of each 3D
model, captured from different angles, along with metadata
from Objaverse. The model architecture is shown in Fig.6 in
Supplement Materials and is composed of five main compo-
nents: feature extraction (pre-trained ResNet50), sequence
modeling (RNN), attention layer, metadata integration, and
classification heads that predict a specific attribute of the 3D
model, such as style, quality score, and binary tags.

Cross Entropy Loss is used for score annotation, and
BCEWithLogitsLoss is used for binary tag labeling.

2.2.2. Classifier Validation

The evaluation metrics performed on the test set (1971 sam-
ples) are shown in Table 1.

Table 1. Metrics of Annotation Network

Metric Accuracy F1Score mAP
score* 0.5945 - -

relaxed score accuracy 0.8221 - -

is_multi_object 0.8621 0.703 0.6927
is_scene 0.8667 0.731 0.9176
is_figure 0.9448 0.844 0.6815
is_transparent 0.9372 0.835 0.7435
is_single_color 0.9169 0.796 0.6745

Among all the metrics, it is clear that the metrics
for the binary tags (is_multiple_object, is_scene, is_figure,
is_transparent) demonstrate strong accuracies. These met-
rics highlight the reliability of the network in identifying
different characteristics of the model, which is valuable for
various 3D modeling applications. “Score” (marked with
*in Table 1) is a relatively weak metric of the annotation
network due to subjective nuances, as mentioned above.
Here we include a “relaxed accuracy for score” that allows
scores 2 and 3 to be interchangeable. The “relaxed score
accuracy” improves significantly to 82.21%, showing that
the network captures general quality distinctions effectively,
though missing subtle differences among models of high



quality. The high accuracy of our annotation network shows
that our proposed tags are learnable by a carefully designed
classifier.

3. Dataset Evaluation

We set up an image-to-3D generation task as a practical and
reproducible approach for future studies on 3D dataset cu-
ration. OpenLRM [4], an open-source framework designed
to generate 3D models from a single image input. Given our
computational constraints, we utilized OpenLRM’s small
model architecture, which is optimized for limited comput-
ing resources while still providing effective 3D generation
capabilities. Table 3 in the supplement describes the model
configuration used in this work[4].

We randomly sampled 100,000 objects from Objaverse
to create Training Set A, and its binary quality tag dis-
tribution is described in Table 2 in Supplement Materials.
Using quality filtering criteria, we then selected approxi-
mately 50,000 high-quality objects to form Training Set B.
Filtering criteria included selecting models of high or su-
perior quality, excluding monochromatic models, exclud-
ing scenes, and excluding models with any transparent part.
This setup is well-suited for single-object generation, as the
filtering criteria ensure a subset that closely aligns with the
input distribution of the generation task.

We trained the same model on Training Set A. This train-
ing, starting from scratch, took approximately 9 hours on
8 H100 GPUs. Subsequently, we trained the same model
on Training Set B, which required about 6 hours under the
same conditions.

To assess the performance of the model, we conducted a
user study with 47 participants. Each participant was pre-
sented with 10 pairs of generation results: one generated
from Training Set A and the other from Training Set B. The
generated 3D models are inferenced given the sample in-
puts of the open-source OpenLRM. The generated results
were shown in random order, and participants were asked
to choose their preferred result or to select “no preference”,
without knowing the origin of each generation. To reduce
bias, the question order and the option order were random-
ized. The participants came from diverse backgrounds, in-
cluding artists, machine learning researchers, game devel-
opers, and software engineers.

3.1. Better Generation Quality

The user study shows significant results (see Figure 3) in
favor of our generation model. Of the 10 pairs of objects, 8
showed a preference for our model over the baseline. De-
spite the presence of the no-preference option, participants
favor our generation more. Our model receives 83.5% more
votes than the baseline.

We have also conducted quantitative research using
chamfer distance. The pre-trained OpenLRM-obj-small-

Figure 2. A comparison of image-to-3D generation results by ran-
domly sampled 100,000 dataset vs. our model. Overall, our model
consistently produces results with more refined details, better tex-
turing, and more realistic material properties in surface details,
shadows, and material rendering.
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Figure 3. User Study Results. Of the 10 pairs of objects, 8 showed
a preference for our model over the baseline.

1.1 trained using the whole Objaverse is used as ground
truth, and we compare the performance of our model (high-
quality subset) and the baseline model (randomly sampled
100k subset) as shown in Fig.4.
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Figure 4. Chamfer distance comparison of the model trained using
the randomly-sampled 100,000 dataset vs. our model using high-
quality subset.
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Figure 5. Baseline: A randomly sampled subset of 100,000 ob-
jects from Objaverse, called Training Set A.

Random 50k Subset: A randomly sampled subset of 50,000 sam-
ples from Training Set A, used to isolate the effect of dataset size
on convergence.

High-Quality Subset: A quality-filtered dataset containing sam-
ples with high and superior quality, excluding monochromatic
models, excluding scenes, and excluding models with any trans-
parent part, called Training Set B.

Superior Quality Subset: A highly curated subset containing
only samples with superior quality, excluding monochromatic
models, excluding scenes, and excluding models with any trans-
parent part.

3.2. Faster Convergence in Training

As shown in Fig.5, our model demonstrates faster conver-
gence on a carefully curated dataset compared to a ran-
domly selected subset of the Objaverse. Training in a re-
fined selection allows the model to require fewer epochs and
steps to achieve optimal performance. This improvement is

evident in two main aspects:

Quality Over Random Sampling. To ensure that dataset
size is not the primary reason for faster convergence, we
randomly sampled 50,000 objects from Training Set A to
create a subset of comparable size to our “high-quality
dataset”. Asillustrated in Fig.5, the random 50k subset does
not result in a significantly faster convergence than the base-
line dataset. This implies that simply reducing the dataset
size does not guarantee faster convergence. In comparison,
our “high-quality dataset”, similar in size to the random 50k
subset, produces substantially faster convergence, demon-
strating that the curated quality of the samples is crucial.

Impact of Annotation Quality. The “superior quality sub-
set”, containing only top quality samples, converges faster
than the “high quality subset” dataset, which includes both
high and superior quality models. This finding supports the
idea that our scoring rubrics are efficient, as higher-quality
data directly contributes to faster and more efficient model
training.

In summary, the findings show that faster convergence
is driven by the quality of the curated dataset rather than its
size. This underscores the importance of our quality-filtered
data and validates that our labeling process improves the
quality of the original Objaverse dataset.

4. Conclusion

We used a combination of human labeling and an annota-
tion network to tag models from Objaverse. The tagging re-
sults for the 100,000 models sampled from Objaverse will
be open-sourced as the initial result, allowing users to create
custom training sets tailored to their specific needs. Using
quantitative metrics and a user study, we show how high-
quality training data can simultaneously enhance effective-
ness, efficiency, and performance in 3D generation.

To our knowledge, our work is the first -

1. to provide quality annotations for objects in the Obja-
verse dataset and manually annotated the largest scale of
10,000 unique 3D objects;

2. to examine the correlations between the quantity of train-
ing data and the quality of generation in the research do-
main of 3D modeling; and

3. to develop standard rubrics of quality scores and other
relevant traits for 3D objects.

Future directions. We acknowledge that further experi-
ments comparing Objaverse++ with Objaverse-XL are im-
portant. In addition, we will explore comprehensive and
quantitative filtering criteria, possibly leveraging more ad-
vanced annotation networks to tag additional model at-
tributes, such as structural complexity or aesthetic style.
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Figure 6. Structure of the annotation network.
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Figure 7. Decision tree for human annotators to categorize the
quality level of a 3D object.

5. Annotation Model Structure

The annotation network structure described in 2.2 is pre-
sented in Fig.6.

6. Quality Score Rubrics

Due to the specialty of judging 3D objects, we composed

additional training material for our human annotators, in-

cluding Fig. 7 and the rubrics below. For quality score, here

are some criteria to consider when an object has proper se-

mantic meaning and texture.
High-Quality Criteria:

* Basic color scheme present but lacks richness and aes-
thetic appeal.

* Acceptable geometric shapes - not too rough but not
highly detailed.

* Basic textures present - goes beyond flat surfaces but
lacks sophistication.

* Visually comfortable and harmonious, but lacks refine-
ment in details (like color rendering and fabric textures).

Superior-Quality Criteria:

* High-quality modeling with rich textures, vibrant colors,
and aesthetic value.

* Rich, harmonious color combinations that feel natural or
appropriate to the style.

* Geometric proportions that match either real-world refer-
ences or suit the intended artistic style.

* Detailed surface texturing with effective lighting/shading.

* Aesthetically pleasing or visually impactful.

» Abundant detailed elements such as decorations, patterns,
etc.

Binary Tags Examples: The examples of each binary
tag are presented in Fig.8.

The data distribution for each binary tag in the human-
annotated dataset is presented in Fig.9, and the data distri-
bution for each binary tag in the randomly sampled 100,000
objects from Objaverse is described in Table 2.

7. Training Loss

Figure 10 demonstrates the impact of dataset quality on
training loss. The high and superior quality subsets show
faster and more stable convergence than the baseline, a
randomly sampled subset of 100,000 objects from Obja-
verse, and random 50k subsets. Quality-filtered data re-
duces noise, accelerates optimization, and enhances learn-
ing stability, allowing the model to converge more effi-
ciently. In contrast, the baseline dataset’s noisy samples
hinder optimization. The superior quality subset achieves
the best results among the four datasets, underscoring the
importance of high-quality data over dataset size for effi-
cient model training.

8. User Study Results

We include an additional Table 4 for the percentage break-
down of our user study and Fig. 2 as examples of the result
comparison included in the user study.
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Figure 8. Examples of different binary tags assigned to 3D models. (a) Transparency: Identifies models with see-through parts. (b) Scene:
Distinguishes scene-like models from standalone objects, enabling differentiation in 3D model generation suited for environments versus
single objects. (c) Single Color: Tags unintentionally monochromatic models, filtering out non-texture-rich objects in texture generation
learning. (d) Not a Single Object: Identifies models with multiple separate components, focusing learning on single-object generation
tasks. (e) Figure: Marks character or figure models, creating a subset for character generation that may benefit from specialized training.

Label | is_multi_object | is_scene | is_figure | is_transparent | is_single_color
0 (No) 94.98% 59.45% | 97.64% 97.67% 81.32%
1 (Yes) 5.02% 40.55% | 2.36% 2.33% 18.68%

Table 2. Distribution of Selected Binary Tags in the 100,000 Annotation Dataset.

Type | Layers | Feat. Dim. | Attn. Heads | Triplane Dim. | Input Res. | Image Encoder Size
small 12 512 8 32 224 dinov2 _vits14 reg | 446M
Table 3. Large language model configuration details.

Our model Baseline No preference
Building 31.9 48.9 19.2
Ceramic 511 38.3 10.6
Fire 46.8 40.4 12.8
Girl 95.7 0 43
Hotdogs 27.7 12.8 59.5
Hydrant 61.7 31.9 6.4
Lamp 61.7 29.8 8.5
Mailbox 44.7 48.9 6.4
Owl 51.1 19.1 29.8
Traffic 46.8 12.8 40.4

Table 4. User study results in percentage. Of the 10 pairs of ob-
jects, 8 preferred our model (in bold) over the baseline.
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Figure 9. The distribution of binary tags in the human-annotated
training dataset.
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Figure 10. Training loss comparison across different datasets.
Similar to the validation loss result 5, the model converges sig-
nificantly faster on high-quality and superior-quality datasets, and
converges roughly at the same speed on a random 50k subset and
baseline, which is a randomly sampled subset of 100,000 objects
from Objaverse.
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