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Abstract

Recent advances in discrete diffusion models have demon-
strated impressive performance in image generation but re-
main limited in controlled content editing. We propose
DICE (Discrete Inversion for Controllable Editing), the first
framework to introduce precise inversion for discrete diffu-
sion models, encompassing masked generative and multino-
mial diffusion variants. Our approach innovatively records
Gumbel noise sequences in logit space during reverse dif-
fusion, enabling accurate reconstruction and controlled
editing without predefined masks or attention manipula-
tion. Through extensive experiments with image models
like Paella and VQ-Diffusion, we validate DICE’s ability
to preserve high fidelity to original data while substantially
enhancing editing flexibility, establishing new avenues for
fine-grained manipulation in discrete domains.

1. Introduction

Diffusion models have achieved remarkable success in gen-
erating high-fidelity images and videos [8, 18, 33, 34, 36,
38]. These models iteratively denoise samples from noise
distributions, reversing a gradual corruption process. Dif-
fusion models are broadly categorized into continuous and
discrete types, each tailored to specific data modalities.

Continuous diffusion models utilize stochastic differ-
ential equations (SDEs) or ordinary differential equations
(ODEs) to handle continuous data [40, 41], with advances
such as flow matching [6, 24] enhancing their efficiency.
Recent work on visual prompting also improves adapta-
tion efficiency in vision models [22]. Applications include
image editing [13, 29], medical imaging [15], and inverse
problems [5, 42]. Critical for controlled manipulation is
inversion, which recovers latent representations through de-
terministic [40] or stochastic inversion [8, 47].

Discrete diffusion models target inherently discrete data

Input Image Inpainting w/ Mask Ours (w/o Mask)

Black and white cat dog on floor

Figure 1. Illustration of the limitation of masked inpainting
method. Here, we want to change the cat to a dog. Inpainting
with masked generation inadvertently modifies the orientation of
the head, resulting in a less favourable result. With our discrete
inversion method, we are able to edit the image while preserving
other properties of the object being edited. This is achieved by in-
jecting the information from the input image into the logit space.
Dotted red box indicates the mask.

like text or image tokens [1, 11, 19]. Prominent exam-
ples include multinomial diffusion [19] and masked genera-
tive models like MaskGIT [3]. However, controlled content
editing remains challenging. Masked generative models use
masked inpainting for editing but lack fine-grained control,
as regions cannot inject information into regenerated areas
(Figure 1). Moreover, ODE-based inversion techniques do
not directly apply to discrete models due to fundamental
differences in data representation and diffusion processes.

To address these limitations, we propose DICE (Discrete
Inversion for Controllable Editing), the first inversion algo-
rithm for discrete diffusion models to our knowledge. Our
method extends stochastic inversion to discrete diffusion
models, including multinomial diffusion and masked gener-
ative models, by recording noise sequences during reverse
diffusion. Specifically, we construct artificial trajectories
with low latent-state correlation, fit reverse sampling steps,
and record residuals between targets and predictions. These
residuals imprint original data information, enabling con-
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Figure 2. Inversion and editing process for masked generative
modeling (MGM) as in Algorithm 1.

trolled editing by reinjecting residuals during inference.
DICE achieves accurate reconstruction and controlled

editing without predefined masks or attention manipulation,
providing flexibility for fine-grained discrete data editing.
We validate our method extensively across image and text
modalities, demonstrating effectiveness with models like
VQ-Diffusion [11] and Paella [37]. Additionally, we in-
troduce a new text-editing dataset to facilitate future re-
search. Our contributions are: (1) Introducing DICE, en-
abling precise inversion and controlled editing for discrete
diffusion models through stochastic inversion with noise
residual recording. (2) Demonstrating DICE’s effective-
ness and versatility across image and text generative models
through extensive experiments.

2. Related Work

Discrete diffusion. Diffusion models in discrete spaces
were initially explored in [39], and further formalized us-
ing discrete-time Markov chains by Argmax Flows [19] and
D3PM [1]. These models reverse the noising process via
variational training. VQ-GAN [9, 11] enables token-based
image generation, paving the way for non-autoregressive
models like MaskGIT [3], Muse [4], and MMVID [12].
Recent methods adapt score matching to discrete spaces,
such as ratio matching [26, 30] and discrete flow match-
ing [10]. In NLP, masked language models like BERT [7]
and RoBERTa [25] have also been interpreted as discrete
diffusion processes [44].
Diffusion inversion. Inversion aims to recover the latent
code that reconstructs input data. Deterministic methods
like DDIM [40] and flow matching [24] use neural ODEs,
while stochastic approaches like DDPM Inversion [20] and
CycleDiffusion [47] trace noise in SDEs. Our method

generalizes DDPM Inversion to discrete diffusion models,
bridging the gap between continuous and discrete domains.
Inversion-based image editing. DDIM inversion under-
pins many editing techniques, often combined with atten-
tion guidance [16, 17, 27, 43]. DDPM inversion meth-
ods [20] offer simpler interfaces and integrate with seman-
tic guidance like SEGA and LEDITS++. Null-text Inver-
sion [32] enhances fidelity through test-time embedding op-
timization, while Negative-prompt Inversion [14, 31] offers
efficient, closed-form solutions to improve editing speed.

3. Methods
3.1. Preliminaries
Masked generative modeling. Masked generative model-
ing is widely used in representation learning for both nat-
ural language processing and computer vision. It works
by masking parts of the input and training the model to
reconstruct the missing data. In models like BERT [7]
and RoBERTa [25], masked tokens ([MASK]) are predicted
based on the surrounding context, excelling in text comple-
tion and embedding representation learning. For image gen-
eration, Paella [37] adapts this approach for text-conditional
image generation by renoising tokens instead of masking.
The inference process in masked generative models typi-
cally involves iterative renoise/remask and repredict steps.
Multinomial Diffusion. Denoting x0 ∈ {1, . . . ,K}D as
a data point of dimension D. We use v(x

(i)
t ) to denote the

one hot column vector representation of the i-th entry of xt.
To simplify notation, in the following we drop index i and
any function that operates on vector xt is populated along
its dimension. Diffusion model defines a markov chain
q(x1:T |x0) = ΠT

t=1q(xt|xt−1) that gradually add noise to
the data x0 for T times so that xT contains little to no in-
formation. Discrete diffusion model [1, 11, 19] proposed an
alternative likelihood-based model for categorical data, and
defines the forward process following:

q(xt|xt−1) = Cat (v(xt);π = Qtv(xt−1)) . (1)

where Qt is the transition matrix between adjacent states
following mask-and-replace strategy. The posterior distri-
bution given x0 has a closed-form solution,

q (xt−1|xt, x0) =
(Q⊤

t v(xt))⊙ (Qt−1v(x0))

v(xt)⊤Qtv(x0)
. (2)

where Qt = Qt · · ·Q1 is the cumulative transition matrix.
The details of Qt and Qt are given in the supplementary
materials. The inference process is as below:

πθ(xt, t) = pθ (xt−1|xt) =

K∑
x̃0=1

q (xt−1|xt, x̃0) pθ (x̃0|xt) ,

(3)



with pθ(x̃0|xt) is parameterized by a neural network. We
gradually denoise from xT to x0 using 3. For numerical
stability, the implementation uses log space instead of prob-
ability space. Masked generative models can be viewed as
a special case of multinomial diffusion models with an ad-
ditional absorbing state (or the [MASK] state). Its training
objective can be viewed as a reweighted ELBO [2].

3.2. Discrete Inversion for Controllable Editing
Non ODE-based inversion. ODE-based generative mod-
els, such as DDIM and flow matching, define an ODE tra-
jectory. Due to the deterministic nature of ODEs, inversion
can be achieved by solving the ODE using the Euler method
in forward direction, ensuring reconstruction based on the
inherent properties of the ODE. In contrast, another line of
research focuses on SDE-based models, such as CycleD-
iffusion [47] and DDPM Inversion [20]. Broadly speak-
ing, these approaches ensure reconstruction by recording
the noises or residuals that are required to reproduce the
stochastic trajectory. CycleDiffusion records the Gaussian
noise zt during sampling from posterior p(xt−1|xt,x0 =
x0) and injects information of the input signal by feeding
the true x0. DDPM Inversion, on the other hand, incorpo-
rates information into zt by fitting the reverse process into
an artificial stochastic trajectory obtained by independent
q-sample. For both CycleDiffusion and DDPM Inver-
sion, the key idea is to utilize the Gaussian reparameteriza-
tion trick, x = µ + σz ⇔ x ∼ N (x;µ, σ2), and keeping
track of the “noise” that could have generated the sample
from mean. For discrete diffusion models, we utilize the
Gumbel-Max trick [21, 28], x = argmax (log(π) + g) ⇔
x ∼ Cat(x;π). Figure 2 provides an intuition of the pro-
posed method.

Method PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑
Inpainting 10.50 565.11 1002.09 30.13
Ours 30.91 39.81 11.07 90.22
Ours† Inf 0.07 0.01 99.99

Table 1. Inversion Reconstruction performance. † The metric is
calculated between the original image and its inverted counterpart.
Due to the encoding and decoding steps in the VQ-VAE/GAN pro-
cess, some inaccuracies are introduced by the quantization. The
PSNR is Inf due to the reconstruction of our method yielding the
same VQ-VAE/GAN latents. Base model is Paella [37].

Inverting masked generative models. In masked gener-
ative modeling, the stochastic trajectory xt is constructed
according to the specific inference algorithm of the model
in use. For example, in Paella [37], the masking is inclu-
sive, meaning that as the time step t increases, the set of
masked tokens grows. In contrast, the Unleashing Trans-
former [2] employs random masking at each step, where
masks are generated independently using the q-sample

Algorithm 1 Discrete Inversion for Masked Generative
Modeling

Inversion:
1: y0 ← D(x0, c, t = 0)
2: Sample noise token map n
3: for t from 1 to T do
4: mt ← GenerateMask(t) ▷ Sampling masks

according to inference algorithm
5: xt ← x0 ⊙ (1−mt) + n⊙mt

6: ŷ0|t ← Dθ(xt, c, t = t)
7: zt ← y0 − ŷ0|t ▷ Eq 4
8: end for

Editing/Sampling:
9: for t from τ to 1 do

10: ŷ0|t ← Dθ(xt, c
′, t = t)

11: g ∼ Gumbel(0, I)
12: ỹ0 ← ŷ0|t + λ1 · zt + λ2 · g
13: x̃0 ← argmax ỹ0

14: xt−1 ← x̃0⊙ (1−mt−1)+n⊙mt−1 ▷ Re-noise
15: end for
16: Return x0.

function. Without loss of generality, we define a denoiser
function Dθ (parameterized by θ). This denoiser outputs
the logits of the predicted unmasked data given the noisy
tokens xt. Unlike DDPM or multinomial diffusion, where
xt−1 is not sampled from a posterior given xt, the infer-
ence of masked modeling takes a different approach. In
masked modeling, xt is obtained from sampled x̂0|t by re-
noising. Since the categorical sampling happens at sam-
pling from the denoiser’s prediction, we therefore define an
corresponding latent sequence:

ŷ0|t = log(pθ(x0|xt)) = Dθ(xt, t)

zt :=y0 − ŷ0|t. (4)

With our proposed latent space, accurate reconstruction is
guaranteed. However, for editing tasks, this level of pre-
cision may not be ideal if the latent variable zt dominates
the generation process. The detailed algorithm is given in
Algorithm 1.

To provide more flexibility, we introduce the hyperpa-
rameters τ , λ1, and λ2, which allow for finer control over
the editing process. Specifically, τ represents the starting
(and largest) timestep at which the editing process begins,
while λ1 controls the amount of information injected from
the original input, and λ2 governs the introduction of ran-
dom noise (Algorithm 1 line 12).

4. Experiments
We evaluate the effectiveness of DICE on image diffusion
models. Experiments show that our method preserves iden-



tity while enabling controlled editing. See Supplementary
Materials for implementation details.
Image diffusion models and dataset. We evaluate on
absorbing-state discrete models [1], including the masked
generative model Paella and multinomial diffusion model
VQ-Diffusion. For benchmarking, we use the Prompt-
based Image Editing Benchmark (PIE-Bench) [23], which
assesses text-to-image editing across 9 scenarios with 700
annotated images.
Reconstruction and editing evaluation. We first assess
reconstruction quality by comparing original and recon-
structed images using PSNR, LPIPS, MSE, and SSIM. As
shown in Table 1, DICE achieves near-perfect reconstruc-
tion, far outperforming Inpainting + Paella, which lacks ac-
cess to the original image structure due to full masking. Our
method avoids quantization artifacts seen in VQ-VAE/GAN
baselines, highlighting its fidelity and consistency.

We then evaluate editing performance using eight met-
rics across three aspects: structural similarity [43], back-
ground preservation (PSNR, LPIPS [48], MSE, SSIM [45]),
and semantic alignment via CLIP [35] similarity [46]. Ta-
ble 2 shows DICE with Paella achieves the lowest struc-
ture distance (11.34), outperforming even continuous dif-
fusion baselines. While Stable Diffusion scores higher on
CLIP similarity, our method offers better structural fidelity,
achieving a strong trade-off between prompt alignment and
preservation of image content.

Using VQ-Diffusion, DICE also shows robust editing
performance. As seen in Table 3, our method significantly
outperforms DDIM+SD1.4 in preserving unedited regions
across all background metrics. These results confirm that
original image information is effectively encoded and rein-
jected during editing. Figure 3 presents visual examples
with Paella. Our method consistently modifies real images
according to target prompts while maintaining high fidelity
to the original content.

5. Conclusion
In this paper, we introduced an inversion algorithm for dis-
crete diffusion models, including multinomial diffusion and
masked generative models. By leveraging recorded noise
sequences and masking patterns during the reverse diffusion
process, DICE enables accurate reconstruction and flexi-
ble editing of discrete data without the need for predefined
masks or cross-attention manipulation. Our experiments
across multiple models and modalities demonstrate its ef-
fectiveness in preserving data fidelity while enhancing edit-
ing capabilities. We believe that DICE enhances the capa-
bilities of discrete generative models, offering new oppor-
tunities for fine-grained content manipulation.

two origami birds sitting on a branch

A cat dog sitting on a wooden chair

Input Image Reconstruction Editing

Figure 3. Visualization of editing results. Editing results for our
method using Paella, along with their corresponding prompts.

Method Structure CLIP Similarity

Inversion+Model Editing Distance×103 ↓ Whole ↑ Edited ↑

C
on

tin
uo

us DDIM+SD1.4 P2P 69.43∗ 25.01∗ 22.44∗

Null-Text + SD1.4 P2P 13.44∗ 24.75∗ 21.86∗

Negative-Prompt + SD1.4 P2P 16.17∗ 24.61∗ 21.87∗

DDPM-Inversion + SD1.4 Prompt 22.12 26.22 23.02

D
is

cr
et

e Inpainting + Paella Prompt 91.10 25.36 23.42
Ours + Paella Prompt 11.34 23.79 21.23
Ours + VQ-Diffusion† Prompt 12.70 23.85 21.02

Table 2. Quantitative results on image editing performance.
Comparison of DICE with the masked inpainting with the dis-
crete diffusion models as well as continuous ones (Stable Dif-
fusion v1.4) using DDIM inversion. “P2P” refers to Prompt-
to-Prompt [16], and “Prompt” denotes editing performed solely
through forward edit prompts. Entries marked with an asterisk (∗)
are cited from [23]. †: For VQ-Diffusion, the images are down-
sampled to 256× 256. Please note that due to differences in base
models and editing algorithms, the metrics across methods are not
directly comparable. However, our method significantly outper-
forms both inpainting and strong baselines (e.g., Null-Text Inver-
sion + SD1.4) in terms of structural preservation. As expected,
inpainting achieves a high CLIP score since it directly generates
image patches based on the target prompt.

Method Background Preservation

Inversion+Model Editing PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑
DDIM+SD1.4 P2P 17.87 208.80 219.88 71.14

Ours+Paella Prompt 27.29 52.90 43.76 89.79

Table 3. Background Preservation. Quantitative comparison
of background preservation between our proposed method and
DDIM+SD 1.4, achieved by masking the edited region and cal-
culating image similarity with the unedited masked image. The
inpainting is served as upper bound since only the masked region
are edited and background are not modified.
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