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“ A mirror portal reflecting alternate futures 

in a forgotten library buried in sand. ”

“ A glowing bonsai tree inside a crystal orb resting 

on a pedestal in a quiet starlit chamber. ”

Figure 1. Comparisons between CFG and SMG(Ours)

Abstract

We propose Scaled Momentum Guidance (SMG), a
simple, training-free sampling method with no additional
computation cost that improves quality and alignment in
diffusion and flow-based generative models. While guid-
ance methods like Classifier-Free Guidance (CFG)[9] im-
prove conditional fidelity, they often introduce artifacts due
to over-amplification and error accumulation. SMG mit-
igates this by incorporating a momentum term that stabi-
lizes trajectories and encourages convergence toward co-
herent semantic modes. A scheduling function further con-
trols guidance strength over time, balancing structure and
diversity. Evaluated on the MS COCO dataset[17] with
the text-conditional SD3 model [6], SMG consistently im-
proves FID [8] and CLIPScore [21], and outperforms CFG,
PAG [1], and CFG++ [4], demonstrating strong general-
ization across sampling regimes.

1. Introduction
Generative models based on continuous-time dynam-
ics—such as diffusion probabilistic models (DPMs)[12, 24,
25] and continuous normalizing flows (CNFs)[3, 19]—have

demonstrated impressive capabilities in high-fidelity data
synthesis. DPMs operate by reversing a stochastic noise
process via learned score functions, while CNFs use neural
ODEs to deterministically map samples from a base distri-
bution to the data manifold. Recent theoretical work unifies
both approaches under a common probabilistic flow (PF)
framework [12, 25], offering a continuous-time interpreta-
tion of generative dynamics. Despite this theoretical clar-
ity, effective sampling remains a challenge due to the mul-
timodal nature of the data and the instability of trajectories
in low-density regions [13].

Diffusion and flow-based models inherently predict av-
erages over multiple data modes [2, 7], resulting in se-
mantically ambiguous or blended outputs []. When com-
bined with guidance mechanisms such as Classifier-Free
Guidance (CFG)[9, 27], these models are more likely to
reach high-probability regions. However, this process am-
plifies the influences of multiple conditional direction over
the generative trajectory, often leading to undesirable ar-
tifacts such as oversaturation, loss of diversity, or seman-
tic drift [13, 16, 23]. These artifacts are particularly prob-
lematic because generation is sequential: samples at each
timestep are conditioned on the previous state, and early ar-
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Figure 2. Visualization of v0|t across timesteps under CFG and SMG, where v0|t denotes the model’s prediction of the final output image
given the intermediate timestep t. CFG produces overlapped objects, resulting in unnatural artifacts that persist throughout sampling (four
duplicated cat paws). In contrast, SMG resolves such ambiguity in the early stages, yielding coherent object structures that remain stable
in subsequent steps (two properly positioned paws).

tifacts tend to persist throughout the process, making them
difficult to eliminate in later stages [26]. To alleviate these
issues, two main research directions have been proposed.
One line constructs weak models to hueristically redirect
generation toward more coherent outcomes—examples [1,
10, 11, 13]. Another line of work focuses on decomposing
the CFG vector into content-relevant and quality-relevant
components, allowing selective amplification of the lat-
ter [15, 22].

To overcome these limitations, we propose Scaled
Momentum Guidance (SMG)—a simple, training-free
method with no neural computational cost that improves
sampling stability and output quality while maintaining se-
mantic fidelity. SMG modifies the standard CFG formula-
tion by introducing a momentum term that tracks the devi-
ation between the current sampling direction and the accu-
mulated trajectory. This encourages convergence toward a
single coherent semantic mode, rather than a blended aver-
age of multiple plausible interpretations. In addition, SMG
incorporates a scheduling function that applies stronger
guidance in the early stages—where layout ambiguity is
highest—and gradually reduces its effect over time. This
allows the model to make confident semantic decisions
early while preventing overcorrection in later steps. SMG
does not require retraining, neural network modification,
or additional model evaluations, and can be seamlessly in-
tegrated into existing diffusion or flow-based generative
frameworks.

We evaluate SMG on the MS COCO dataset using the
text-conditional SD3 model [6], focusing on two key as-
pects. First, we demonstrate the scalability of SMG in
improving both sample quality and text-image alignment

across a wide range of guidance and SMG scales. SMG
consistently enhances generation performance as measured
by FID [8] and CLIPScore [21], indicating its effectiveness
in navigating the trade-off between fidelity and conditional
consistency. Second, we compare SMG with other guidance
methods including CFG [9], PAG [1], and CFG++ [4]. Ex-
perimental results show that SMG consistently outperforms
these baselines in both quantitative metrics and qualitative
visual quality, demonstrating strong generalization across
diverse sampling regimes.

2. Method

2.1. Overlapped Multi-mode Layout
In flow-based models [18, 20], overlapping image layouts
may implicitly form during early timesteps, Figure 2, due
to the intrinsic properties of ordinary differential equations
(ODEs). This occurs because the predicted vector at a given
timestep represents an average of multiple possible trajec-
tories, potentially resulting in blended layouts in the gen-
erated images, as illustrated in the first row of Figure. 2.
The sampled outputs look plausible locally but fail to cor-
respond to any individual semantic mode. Consequently,
the generated layout may appear coherent on average, yet
fail to reflect any specific, valid configuration. To overcome
this limitation, we propose a strategy to decisively select
one coherent mode and reinforce its corresponding denois-
ing direction.

2.2. Scaled Momentum Guidance
To resolve directional ambiguity among multiple coex-
isting modes, we propose Scaled Momentum Guidance



(SMG)—a novel guidance formulation inspired by the mo-
mentum mechanism. [5, 14, 22] SMG leverages the dis-
crepancy between the current prediction direction and the
accumulated momentum to guide the sampling trajectory
toward a distinct and coherent semantic mode.

Momentum-guided Direction Nudging In CFG [9] and
Guided Flow [27], the predicted direction is defined as:

vcfg
t = (1 + w) · vcond

t − w · vuncond
t (1)

where w denotes the guidance scale. However, this lin-
ear interpolation tends to blend multiple plausible layout
modes, making it difficult to steer denoising toward a de-
cisive semantic direction when ambiguity is high.

To overcome this limitation, we enhance CFG’s predic-
tion using a momentum vector and define SMG as follows:

vsmg
t = vcfg

t + γ(t)(vcfg
t − vmom

t ) (2)

where vcfg
t is the current vector prediction and vmom

t is
the accumulated momentum up to the previous timestep.
The guidance scale γ(t) is defined as a function of the
timestep t. It is designed to apply strong guidance solely
during the early stages, when the object-overlapping artifact
is most likely to occur. Additionally, a scaling factor η is
introduced to control the maximum value of γ(t), allowing
flexible adjustment of the SMG strength during sampling.
vcfg
t − vmom

t captures the deviation from the momentum
vector, thus offers a differentiated direction that facilitates
convergence toward a single dominant mode rather than a
blended average. Therefore, vsmg

t is our refined direction.
The final guidance direction is then constructed by scaling
this refined direction by γ(t) = η · f .

Furthermore, to avoid instability during sampling, we
modulate the guidance strength over time using a schedul-
ing function γ(t), which is empirically modeled by a logit-
normal distribution. The scheduling function is designed to
serve three distinct roles:
• Early Stage: γ(t) rises sharply, softly nudging the sam-

pling trajectory toward a coherent layout when multiple
semantic modes coexist.

• Middle Stage: γ(t) decays, reducing the correction
strength to avoid over-biasing and allowing a natural sep-
aration of modes.

• Late Stage: γ(t) approaches zero, recovering standard
sampling behavior and enabling fine-grained refinement
without altering the global structure.
This gradual modulation allows SMG to resolve early-

stage ambiguities by softly guiding the sampling process to-
ward a plausible configuration, while maintaining stability
and semantic consistency throughout the trajectory. More-
over, by ensuring that the integral of γ(t) over the full tra-
jectory is close to zero, the scheduling design avoids cumu-
lative drift and preserves the overall flow structure.

FID(↓) [8] / CLIPScore (↑) [21]

η = 0(CFG) η = 1.0 η = 1.5 η = 2.0

ω = 1.0 89.68 / 29.48 77.56 / 29.45 80.11 / 29.27 90.65 / 29.06
ω = 2.0 44.79 / 31.20 41.45 / 31.06 45.72 / 30.92 42.05 / 30.99
ω = 3.0 39.65 / 31.48 37.76 / 31.37 37.71 / 31.33 36.79 / 31.55
ω = 4.0 38.75 / 31.55 37.53 / 31.45 37.47 / 31.35 36.98 / 31.40
ω = 5.0 39.88 / 31.56 38.41 / 30.71 37.54 / 30.70 36.56 / 30.68
ω = 6.0 39.97 / 31.57 36.81 / 31.43 37.33 / 31.54 37.54 / 30.68

Table 1. Comparison of FID (↓) [8] and CLIP score (↑) [21] on the
MS COCO dataset [17] using SD 3 [6], evaluated under various
CFG (ω) and SMG (η) scales. Our method achieves a more effi-
cient trade-off between FID and CLIP scores compared to CFG.

SD3 [6] CFG [9] PAG [1] CFG++ [4] +SMG (Ours)

FID (↓) 39.65 37.61 89.71 36.79
CLIP score (↑) 31.48 31.67 29.48 31.35

Table 2. Comparison of guidance methods on MS COCO using
the SD3 model. SMG achieves the best FID score, indicating su-
perior visual fidelity, and ranks second in CLIPScore, reflecting
strong text-image alignment. These results demonstrate that SMG
effectively balances perceptual quality and conditional consistency
without requiring retraining or additional computation.

3. Experiments

We evaluate proposed method on the MS COCO dataset
[17] using Stable Diffusion 3 [6] with 30 sampling steps, fo-
cusing on both quantitative metrics and human evaluations.
All baseline methods follow their official implementations
and recommended best settings for fair comparison.

3.1. Quantitative Results

FID / CLIP score tradeoff In Table 1, our method is
compared with standard CFG with varying guidance scales
(w = 1, 2, 3, 4, 5 for CFG and η = 1.0, 1.5, 2.0 for SMG),
which shows that ours achieves a more favorable trade-off
between FID and CLIP score compared to CFG. Specif-
ically, SMG significantly reduces FID while maintaining
CLIP scores close to those of standard CFG, indicating that
SMG improves sample quality without sacrificing semantic
relevance between text and image.

Comparison with Existing Guidance Methods In Ta-
ble 2, SMG is compared with other guidance methods on
Stable Diffusion 3 (SD3), adhering to the recommended
settings from the original authors. Our method substan-
tially improves FID over existing methods while maintain-
ing competitive CLIP scores. To complement quantitative
results, we also conduct extensive qualitative evaluations,
including user studies, which confirm that our method pro-
duces images with better text-image alignment and overall
perceptual quality.
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Figure 3. Ablation study. ‘Base’ is conditional generation, ‘SMG’
is Base with momentum nudging, ‘CFG’ is sampling with CFG,
and ‘Ours’ is CFG combined with SMG.
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Figure 4. CFG scale comparison. “A flamingo standing in shallow
pink-tinted salt lakes under a golden sunrise.”

3.2. Qualitative Results

Ablation Study To validate the effectiveness of SMG,
we conducted a series of ablation studies. Figure 3 com-
pares the impact of SMG under both conditional-only and
CFG settings. In the conditional setting (left), SMG ef-
fectively refines ambiguous layouts, leading to overall im-
provements in image quality. In the CFG setting (right),
SMG not only corrects unnatural object configurations but
also enhances visual clarity and better captures fine-grained
details specified by the text conditions. Second, Figure 4
analyzes text-image alignment performance across differ-
ent CFG scales. Across all tested scales, SMG consis-
tently outperforms CFG in accurately reflecting text con-

CFG CFG++ PAG Ours

Figure 5. Qaulitative comparison with the prompt: “A arctic fox
curled up on a glowing ice crystal under the aurora corealis.”, “A
parade of forgotten toys marching through a rainy alley.”

ditions, demonstrating stronger semantic alignment with
key attributes (e.g., “flamingo”, “golden”, etc.). These re-
sults highlight SMG’s robustness in both layout refinement
and semantic consistency under various guidance configu-
rations. Additional results and visualizations can be found
in Appendix C.

User study To complement the quantitative results with a
more objective qualitative assessment, we conducted a user
study with approximately 50 participants, comparing SMG
and CFG in terms of image quality and text-image align-
ment. SMG was preferred in over 70% of cases for both
criteria, confirming its effectiveness in improving percep-
tual quality and semantic consistency. Due to page limita-
tion, details are provided in Appendix B.

Comparison with Existing Guidance Methods To fur-
ther validate SMG, we conduct qualitative comparisons
against other guidance methods (CFG++ and PAG) as
shown in Figure 5 and Appendix A. Our method con-
sistently achieves better image quality and text-image
alignment, preserving fine-grained details (e.g., rainy
scenes) and enhancing global layout coherence (e.g., curled
shapes). Overall, SMG improves layout robustness and se-
mantic consistency in flow-based generation while main-
taining competitive or better performance than recent guid-
ance techniques.

4. Conclusion

We proposed an empirical guidance method inspired by the
linear trajectories of flow models and momentum dynam-
ics, encouraging early convergence to a single semantic
mode. Therefore, SMG outperforms existing methods in
text-image alignment and image quality, achieving the best
FID and strong text-image alignment validated by human
preference.
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Supplementary Material

A. Model Comparison
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Figure 6. Comparison with recent guidance methods. ”A desk lamp on a wooden pier, its light
reflecting softly on the lake at night.”, ”A cat-shaped spaceship landing on a candy planet sur-
rounded by gumdrop tress.”, ”A toolbox placed carefully on a picnic blanket in a meadow.”, ”A
snow globe containing a snowy cabin with warm lights and pine trees.”

B. User Study

Aesthetic Text Alignment
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Figure 7. The results of the user study.



C. Extended results on MS COCO
CFG (CFG Scale 3.0)
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Figure 8. MS-COCO Comparison. CFG scale 3.0, SMG scale 2.0
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Figure 9. MS-COCO Comparison. CFG scale 4.0, SMG scale 2.0
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