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Figure 1. FreSca: A plug-and-play enhancement for diffusion models. Without retraining, FreSca refines Marigold [10] depth
predictions to recover fine details (top); enables precise, prompt-aligned generation over SD3 [5] (middle) ; and boosts motion, detail, and
temporal consistency in VideoCrafter2 [3] video generation (bottom). Project page: https://wikichao.github.io/FreSca/.

Abstract

Latent diffusion models (LDMs) have achieved remarkable
success in a variety of image tasks, yet achieving fine-
grained, disentangled control over global structures ver-
sus fine details remains challenging. This paper explores
frequency-based control within latent diffusion models. We
first systematically analyze frequency characteristics across
pixel space, VAE latent space, and internal LDM represen-
tations. This reveals that the “noise difference” term, ∆ϵt,
derived from classifier-free guidance at each step t, is a
uniquely effective and semantically rich target for manipula-
tion. Building on this insight, we introduce FreSca, a novel
and plug-and-play framework that decomposes ∆ϵt into low-
and high-frequency components and applies independent
scaling factors to them via spatial or energy-based cutoffs.
Essentially, FreSca operates without any model retraining
or architectural change, offering model- and task-agnostic
control. We demonstrate its versatility and effectiveness in

improving generation quality and structural emphasis on
multiple architectures (e.g., SD3, SDXL) and across applica-
tions including image generation, editing, depth estimation,
and video synthesis, thereby unlocking a new dimension of
expressive control within LDMs.

1. Introduction

Latent diffusion models (LDMs) [12] generate high-quality
images [5, 11] but offer limited nuanced control beyond
initial conditioning. Users often desire direct, disentangled
modulation of image characteristics, such as texture/shape
balance or artistic style, which current methods often require
complex changes or retraining.

The frequency domain, generally excelling at separating
global structures (low-frequencies) from fine details (high-
frequencies), offers a powerful paradigm for image manip-
ulation. We hypothesize that integrating frequency-domain
operations within LDM internals can unlock more intuitive
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Figure 2. (a) Frequency decomposition of image and
SD3 [5]/SDXL [11] VAE encodings with r0 = 0.05 (pixel) and
r0 = 0.5 (latent). (b) Cutoff-radius sensitivity in pixel vs. latent.

control. This raises key questions: how do frequency charac-
teristics translate to the VAE latent space, and which LDM
component is best for such operation?

Our investigation compares frequency representations in
pixel space, VAE latent space (as shown in Fig. 2), and in-
ternal LDM states. We identify the classifier-free guidance
(CFG) derived “noise difference” term, ∆ϵt [7], as a seman-
tically rich and highly effective target for frequency manip-
ulation. Building on this, we propose FreSca, a versatile,
plug-and-play method. FreSca decomposes ∆ϵt into low-
and high-frequency components at each denoising step and
applies distinct scaling factors, enabling independent control
over global structures and fine details. It supports various fre-
quency cutoffs and, by operating on the common noise space,
is model- and task-agnostic, unlike prior methods [2, 14].
We demonstrate its efficacy on models like SDXL [11] and
tasks including image generation, editing, depth estimation,
and video synthesis [1, 3, 10]. Our core contributions are
the identification of ∆ϵt as an optimal control target and the
versatile FreSca approach.

2. Method
This section details our approach. We first analyze frequency
characteristics in pixel versus VAE latent spaces and within
various diffusion model representations to identify an opti-
mal target for manipulation. We then introduce FreSca, our
method for fine-grained frequency control in latent diffusion
models (LDMs).
Preliminaries. LDMs encode images I into latents x =
E(I) using a VAE encoder E and decode them with D. The
denoising network ϵθ(xt, t) operates on noisy latents xt at
timestep t to predict the added noise ϵt, reversing a noise
corruption process over T steps.

2.1. Frequency Analysis in VAE Latent and Diffu-
sion Spaces

Frequency Decomposition. We define a frequency decom-
position for a signal u (either an RGB image I or VAE latent
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Figure 3. (a) Results of frequency decomposition on various diffu-
sion representations; (b) Temporal average over T steps for each
representation, highlighting the semantic richness of the noise-
difference term. Please zoom in for better visibility.

x). Given its 2D Fourier transform U = F(u) (Eq. (1)),
and a cutoff ratio r0 ∈ [0, 1] determining a cutoff radius
Rc = r0 ·min(H/2,W/2) for spatial dimensions H ×W ,
we define binary low-pass Ml and high-pass Mh masks
(Eq. (2)).

U = F(u), u = F−1(U). (1)

Ml(kx, ky) =

{
1, if

√
k2x + k2y ≤ Rc,

0, otherwise,

Mh(kx, ky) = 1−Ml(kx, ky).

(2)

The low- and high-frequency components are

ul = F−1
(
Ml ⊙ U

)
, uh = F−1

(
Mh ⊙ U

)
. (3)

Pixel vs. VAE Latent Frequencies. Applying this to images
I and their VAE encodings x (see Fig. 2(a)) reveals that latent
high-frequencies (xh) retain more abstract semantic patterns
and exhibit different sensitivity to r0 compared to pixel-
space details (Fig. 2(b)). This suggests the VAE latent space
is a richer domain for semantic frequency manipulation.
Targeting Diffusion Model Internals. For conditional
generation, LDMs use Classifier-Free Guidance (CFG) [7],
where the effective noise prediction is:

ϵt = ϵθ(xt, t)+ω·∆ϵt, with ∆ϵt = ϵθ(xt, c, t)−ϵθ(xt, t).
(4)

We investigate applying frequency decomposition (Eqs. (1)
to (3)) to three candidate representations within the diffusion
process: the noisy latents xt, the combined noise prediction
ϵt, and the noise difference term ∆ϵt. Our experiments (vi-
sualized in Fig. 3(a)) reveal that manipulating ∆ϵt yields the
most semantically meaningful and controllable results. The
time-averaged ∆ϵ̄ also exhibits clearer semantic structures
compared to averages of other candidates (Fig. 3(b)).
Step-wise Frequency Dynamics. Analysis of spectral pro-
files over denoising steps (Fig. 4) indicates that ∆ϵt evolves
from a more low-pass characteristic at early stages towards
a broader spectrum later. Its magnitude also generally in-
creases as t decreases, suggesting guidance becomes more
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Figure 4. Relative log amplitudes of Fourier over all T denoising
steps for (a) the latent variables xt, (b) the noise prediction ϵt, and
(c) the noise-difference term ∆ϵt. Each curve corresponds to a
timestep, illustrating how low and high frequencies changes in each
representation.Please zoom in for better visibility.

influential in refining details during later steps. This dynamic
nature motivates adaptive frequency manipulation.

2.2. FreSca: Versatile Frequency Scaling

Based on these findings, we propose FreSca, which modi-
fies the noise difference term ∆ϵt by independently scaling
its low- and high-frequency components. Let Ut = F(∆ϵt).
The modified term ∆̂ϵt (illustrated in Fig. 5) is:

∆̂ϵt = F−1
(
l ·Ml ⊙ Ut + h ·Mh ⊙ Ut

)
, (5)

where l and h are scaling factors for low- and high-frequency
bands, respectively. This ∆̂ϵt then replaces ∆ϵt in Eq. (4).
FreSca offers flexibility (e.g., detail enhancement with
h > 1, l = 1; smoothing with l > 1, h < 1), faithfulness
(original CFG if l = h = 1), and generality across models
and tasks.
Dynamic Cutoff Determination. The cutoff radius Rc for
Ml,Mh can be set dynamically at each timestep t:

1. Spatial-Ratio Cutoff: Rc(t) = r0 ·min(Ht/2,Wt/2),
where Ht,Wt are spatial dimensions of Ut.

Rc(t) = r0 ·min(Ht/2,Wt/2). (6)

2. Energy-Based Cutoff: Rc(t) is the smallest radius
R such that cumulative spectral magnitude within R
reaches a fraction r0 of the total energy Etot(t) =∑

kx,ky
|Ut(kx, ky)|.

Rc(t) = min
{
R ∈ N0 |∑

√
k2
x+k2

y ≤R

|Ut(kx, ky)| ≥ r0Etot(t)
}
. (7)

3. Experiment

We evaluate FreSca ’s effectiveness across various genera-
tive tasks, including text-to-image, monocular depth estima-
tion, text-guided image editing, and text-to-video generation.
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Figure 5. Overview of FreSca. We introduce scaling factors l and
h to decompose the control mechanisms in the Fourier domain.

3.1. Monocular Depth Estimation

Monocular depth estimation is crucial for 3D scene under-
standing. We enhance Marigold [10], a diffusion-based
depth estimation model, by integrating FreSca to boost its
high-frequency noise components (h > 1, l = 1). As shown
in Tab. 1, FreSca consistently outperforms Marigold
baselines (with or without ensemble) on DIODE, KITTI,
and ETH3D, recovering finer structures and sharper edges,
as illustrated in Fig. 1.

3.2. Text-to-Video Generation

FreSca extends beyond static images to video generation.
Integrating FreSca into VideoCrafter2 [3], an open-source
video diffusion model, improves video quality and fidelity
at no additional cost. As shown in Figs. 1 and 6, FreSca
enhances motion coherence, preserves intricate details, and
mitigates text-video misalignment. This highlights FreSca
’s versatility across diverse diffusion models and tasks.

3.3. Text-to-Image Generation

FreSca demonstrates model-agnostic versatility by inte-
grating with both SDXL (U-Net backbone) and SD3 (multi-

Table 1. Zero-Shot Depth Estimation (AbsRel↓, δ1↑). FreSca
boosts Marigold. ens stand for ensemble, bold indicating the best
results.

Method DIODE [15] KITTI [6] ETH3D [13]

AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑
Marigold (w/o ens) 31.0 77.2 10.5 90.4 7.1 95.1
Marigold (w/ ens) 30.8 77.3 9.9 91.6 6.5 96.0
Marigold w/ FreSca 30.2 77.8 9.8 91.7 6.4 95.9
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“A fisherman casting a net at sunrise, seagulls gliding overhead”

“A motorcycle riding along a desert highway, sand dunes stretching beside”

“Lanterns drifting into the night sky, a calm lake mirroring their glow”

Figure 6. FreSca enhances VideoCrafter2’s [3] video generation quality at no additional cost.

modal diffusion transformer). As shown in Fig. 7, FreSca
consistently enhances prompt fidelity and image quality, re-
ducing distortions in both setups. An energy-based cutoff
strategy (see Fig. 8) also yields generations that more closely
match prompts compared to a spatial-ratio cutoff.

3.4. Text-guided Image Editing

We integrate FreSca into existing training-free image edit-
ing frameworks, LEdits++ [1] and Edited-Friendly DDPM
Inversion [8], on the TEdBench [9] dataset. FreSca
seamlessly plugs into these methods without architectural
changes. Quantitatively (Tab. 2), FreSca consistently

"A steampunk airship soaring above clouds, intricate brass gears 
and propellers visible, sunset casting warm light, concept art 

style."

"An overgrown futuristic space station reclaimed by nature, 
vines covering metallic corridors, shafts of sunlight breaking 

through shattered windows, cinematic."

"A lone astronaut exploring an alien desert landscape, two 
moons visible in a pink sky, strange rock formations, cinematic 

sci-fi scene."

"A bioluminescent forest at twilight, with glowing mushrooms 
and fireflies dancing around ancient moss-covered trees, hyper-

realistic, cinematic lighting, 8K detail."

"A hyper-realistic macro photograph of a dewdrop-laden spider 
web at dawn, water droplets shimmering in golden light, shallow 

depth of field."

"A futuristic cityscape at dawn, with floating glass buildings, 
neon signs reflecting on wet streets, flying cars in the sky, ultra-

detailed, digital art."

"An astronaut and a robot companion sitting by a campfire on 
an icy exoplanet, vibrant aurora swirling overhead, concept art."

"An ethereal portrait of a cyberpunk samurai, neon tattoos 
glowing on their armor, rain-slick streets behind them, dramatic 

chiaroscuro, photorealistic."

"A serene Japanese tea garden in spring, cherry blossoms falling 
over a stone bridge, koi fish swimming in a crystal-clear pond, 

watercolor style."

SD3SDXL SDXL SD3 w/ FreScaSDXL w/ FreSca SDXL w/ FreSca

Figure 7. Samples generated by SDXL [11] and SD3 [5] with or
without FreSca. Please zoom in for better readability.
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Figure 8. Ablation of cutoff strategies: (a) original SDXL output;
FreSca applied with (b) spatial-ratio cutoff and (c) energy-based
cutoff (both h = 1.5).

Table 2. Image editing results evaluated by both generative metrics
(FID-30k and CLIP-text) and human-centric VLM metrics (Success
Rate and Quality).

FID-30k ↓ CLIP-text (%) ↑ Success Rate (%) ↑ Quality

Edited-Friendly DDPM [8] 255.5 31.35 75.0 4.23
DDPM [8] w/ FreSca 253.4 31.54 80.0 4.18

LEdits++ [1] 255.3 31.08 72.5 4.08
LEdits++ [1] w/ FreSca 255.0 31.34 72.5 4.18

w/ FreScaSource LEdits++

Target prompt: “A photo of a car in Manhattan.”

Figure 9. Editing results from LEdits++ [1] with or without
FreSca.

boosts CLIP-text scores and reduces FID, demonstrating
that selective high-frequency amplification strengthens the
target edit while preserving image fidelity. Additionally, we
perform evaluation using the large vision–language model
InternVL2.5-8B [4]. Qualitatively, Fig. 9 further illustrates
these enhancements.

4. Conclusion

This paper introduced FreSca, a novel, model-agnostic
framework for fine-grained, disentangled control over latent
diffusion models through frequency-domain manipulation.
By applying scaled adjustments to the semantically rich
classifier-free guidance noise difference ∆ϵt with dynamic
cutoffs, FreSca offers practical creative control across
diverse models (SDXL, SD3, Marigold, VideoCrafter2) and
tasks (image generation, editing, depth estimation, video
synthesis). This plug-and-play approach not only enhances
visual attributes but also deepens the understanding of fre-
quency components in LDMs. Future work can explore
advanced spectral techniques and learned control strategies.
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