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Abstract

Recently, diffusion models have demonstrated impressive
capabilities in text-guided and image-conditioned image
generation. However, existing diffusion models cannot si-
multaneously generate an image and a panoptic segmen-
tation of objects and stuff from the prompt. Incorporat-
ing an inherent understanding of shapes and scene layouts
can improve the creativity and realism of diffusion models.
To address this limitation, we present Panoptic Diffusion
Model (PDM), the first model designed to generate both im-
ages and panoptic segmentation maps concurrently. PDM
bridges the gap between image and text by constructing seg-
mentation layouts that provide detailed, built-in guidance
throughout the generation process. This ensures the inclu-
sion of categories mentioned in text prompts and enriches
the diversity of segments within the background. We demon-
strate the effectiveness of PDM across two architectures: a
unified diffusion transformer and a two-stream transformer
with a pretrained backbone. We propose a Multi-Scale
Patching mechanism to generate high-resolution segmenta-
tion maps. Additionally, when ground-truth maps are avail-
able, PDM can function as a text-guided image-to-image
generation model. Finally, we show that PDM achieves
state-of-the-art results in image generation with implicit
scene control.

1. Introduction
Diffusion models have recently outperformed other genera-
tive models, demonstrating a strong ability to generate high-
quality, photorealistic images and creative videos with high
fidelity [3, 7, 12, 22, 23, 35, 39, 41, 42, 44]. Their success
has drawn significant attention to generative AI, marking
it as the next frontier following the achievements of AI in
classification tasks. However, text-guided image generation
often lacks control over the spatial structure of the image
[47]. Current diffusion models have difficulty understand-
ing shapes of objects because the diffusion process is uni-
formly applied to every pixel, without regard to the segment
it belongs to. As a result, they may generate objects with un-

realistic shapes and miss components mentioned in the text,
leading to images that are perceived as artificial, as shown
in the left column of Fig.4.

To address this issue, we propose teaching diffusion
models to understand object shapes and scene structures
through panoptic segmentation, which provides information
about both countable objects in the foreground and back-
ground elements that complements text prompts [25]. Re-
cent works, such as ControlNet, have demonstrated that us-
ing images with complex layouts as conditions, in addition
to text prompts, can precisely control the generation pro-
cess [47]. These studies show that image-guided generation
can better align with users’ specific imaginings expressed
through both text and image prompts. Inspired by this, we
anticipate that if diffusion models generate segmentation
maps alongside images to provide inherent guidance, they
can utilize spatial composition information to create more
realistic images.

The co-generation of images and masks is nontrivial and
challenging because it represents a dual problem. Unlike
previous approaches that rely on either a clean image or
a segmentation map as a stable condition to generate the
other, our model tackles the complex task of simultane-
ously denoising both an image and its corresponding map
[10, 47]. To address this, we designed a new paradigm to
solve the dual diffusion problem. Compared to using pre-
defined segmentation maps, co-generation preserves the di-
versity and flexibility of the images. By generating panop-
tic segmentation maps, Panoptic Diffusion Models (PDMs)
provide intrinsic control over image generation, while the
images in turn ensure that the map generation remains co-
herent. Since the generation of both segmentation maps
and images is guided by text, the model learns the corre-
lation between text, images, and maps. With its enhanced
scene understanding capabilities, PDMs represent a signifi-
cant step towards photorealistic image generation.

The major contributions are listed below:
1. We propose a unified diffusion model that generates

both images and panoptic segmentation maps. This model
inherently understands scene structures through collabora-
tive training with multimodal data, requiring no priors and



providing self-control.
2. We adapt the fast ODE solver for image denoising to

facilitate simultaneous image and map generation. The iter-
ative denoising of images and maps is interlinked, ensuring
consistency between them.

3. We design both a one-stream PDM and a two-
stream model that incorporates a pretrained image genera-
tion stream. This second approach uses efficient fine-tuning
techniques and extends pretrained model’s capabilities by
incorporating segmentation maps.

4. We propose a Multi-Scale Patching mechanism to
directly generate high-resolution segmentation maps that
scale up to four times the latent size, without requiring a
super-resolution model.

2. Panoptic Diffusion

2.1. Preprocessing and Postprocessing of Segmen-
tation Maps

As shown in Fig. 1,we process the panoptic segmentation
maps through several steps before feeding them into the dif-
fusion model. Instead of using a binary mask for each ob-
ject, we load pixel-level panoptic annotations. In a segmen-
tation map M0, each pixel’s value is set to the corresponding
category ID if it belongs to a segment; otherwise, its value
is zero. We then convert these pixel values into analog bits
[9]. Analog bits are necessary because a standard diffusion
model can only generate continuous data, while segmenta-
tion classes are discrete and categorical. Since the range of
category ID is from 1 to 200, each pixel is represented by 8
binary bits. Prior to noise scheduling, these bits are scaled
to the range [−1, 1], matching the range of the latent input to
the diffusion model. To ensure that the noise can effectively
flip the bits, its absolute value must exceed one. Therefore,
we set the noise added to the maps as ϵM ∼ N (0, 2 ∗ I).

Latent diffusion models use latent representations of im-
ages encoded by a variational autoencoder(VAE) as inputs.
However, using a separate VAE for encoding and decod-
ing high-resolution segmentation maps is inefficient. We
address this issue by pooling and multi-scale patching. To
achieve high-resolution maps and enable more precise con-
trol, we first pool the maps to match one, two, or four times
the height and width of the image latents. We use min pool-
ing to prioritize smaller category numbers, as the COCO
dataset annotations categorize 1-91 as thing categories and
92-200 as stuff categories. Next, we set the patch size of the
maps to be one, two, or four times that of the images. This
approach ensures that, after patchifying, the sizes of the im-
age and map features align. Given that images have three
RGB channels while maps have only one channel for the
category ID before preprocessing, using a larger patch size
is effective for extracting hidden features from segmenta-
tion maps. Consequently, this method allows us to generate

higher-resolution maps without the need for an additional
VAE or a larger latent size.

2.2. Forward Diffusion Process
In the forward pass of the diffusion process [21], random
noise ϵ ∼ N (0, I) is added to the image latent x0 according
to the noise scheduler. With a total of n steps, each step
updates the noisy image xt from the previous step xt−1,
using scaling factors α and β provided by the noise sched-
uler. This process forms a Markov chain. Consequently,
the noisy image xt can be simplified and calculated directly
from x0.

xt =
√
αt · xt−1 + βtϵ (1)

xt =
√
ᾱ · x0 + σtϵ (2)

where αt are close to 1 and βt = 1−αt. The cumulative fac-
tor ᾱ =

∏t
i=1 αi, and the noise is scaled by σt =

√
1− ᾱ.

To learn to denoise panoptic segmentation maps, we cre-
ate another random Gaussian noise ϵM ∼ N (0, 2 ∗ I) and
add it to the ground-truth maps M0. The same noise sched-
uler is used to add noises to maps.

Mt =
√
ᾱ ·M0 + σtϵM (3)

where Mt is the noised map at timestep t.

2.3. Reverse Diffusion Process
The panoptic diffusion model outputs ϵθ, which estimates
the noise ϵ. Using this estimated noise, we compute the
predicted image x̃0. When incorporating the map as an ad-
ditional input to the diffusion model, the equation for pre-
dicting the image is given by Eq. 4. To accelerate infer-
ence, we utilize a fast DPM solver to compute xti−1 from
xti [29, 30]. By using discontinuous time steps ti and ti−1,
this method can skip intermediate steps, reducing the total
number of sampling steps required. The first-order solver
is described in Equation 5, where hi represents the differ-
ence in the log signal-to-noise ratio between different steps
(hi = log(αti/σti)− log(αti−1/σti−1)). Details on a third-
order solver can be found in Appendix 6.

x̃0(xti ,Mti , C, ti) =
xti − σtϵθ(xti ,Mti , C, ti)√

ᾱ
(4)

xti−1
=

σti−1

σti

xti − αti(e
−hi − 1)x̃0(xti ,Mti , C, ti) (5)

The other output of a panoptic diffusion model is Mθ,
which is a prediction of M0. Drawing inspiration from
DPM-solver++, we use the following equation to estimate
Mti−1 from the previous step. It is important to note that
the model directly estimates M0 rather than the noise added



Figure 1. Pipeline of Panoptic Diffusion Models

to the segmentation map, as predicting ϵM does not provide
effective guidance for the images. By training the diffusion
model with panoptic segmentation maps, it incorporates in-
trinsic self-control into the image generation process.

Mti−1
=

σti−1

σti

Mti − αti(e
−hi − 1)Mθ(xti ,Mti , C, ti)

In a special case where ground truth maps are provided
as conditions, the diffusion model will focus solely on pre-
dicting the images. This allows users to have customized
control for generating desired images, similar to existing
methods [47]. However, this approach limits the diversity
of the generated images.

Since the generation of xt−1 and Mt−1 relies on xt and
Mt, they form a dual problem. Improvements in the qual-
ity of the generated masks and images influence each other.
Consequently, according to the scaling law, a larger diffu-
sion model can produce more accurate masks, which in turn
provides better control and further enhances image quality.

2.4. Dual training and generation
Let the inputs to a panoptic diffusion model at each timestep
be image latent xt, mask Mt, text condition encoded by a
text encoder C, and timestep t. The conditional probability
of xt−1 and M0 is given by

P (xt−1,M0|xt,Mt, c)

= P (xt−1|xt,Mt,M0, c) · P (M0|xt,Mt, c) (6)

Equation 6 show that it is feasible to predict the segmanta-
tion map M0 first, then use it as a condition to predict xt−1.
However, when using a unified model to predict both xt−1

and M0, the intermediate features already contain the seg-
mentation information used to predict M0. Through self-
attention, the map features can inherently condition xt−1.

Therefore, it is reasonable to predict xt−1 and M0 simulta-
neously. By taking the logarithm of the probability, we can
optimize the model by combining the losses associated with
image denoising and segmentation map generation.

logP (xt−1,M0|xt,Mt, c)

= logP (xt−1|xt,Mt,M0, c) + logP (M0|xt,Mt, c) (7)

The training algorithm is outlined in Algorithm 1. We
use Mean Squared Error (MSE) loss to optimize the pre-
dicted noises for both image and segmentation map denois-
ing. Specifically, the target for image denoising is the noise
ϵ, while the target for mask generation is the ground-truth
M0. The losses for images and maps are summed to per-
form gradient backpropagation. During inference, the dif-
fusion model iteratively denoises both images and maps, as
detailed in Algorithm 2.

2.5. Architecture of Panoptic Diffusion Models
2.5.1. One-stream Panoptic Diffusion Models
We first modify a U-ViT to a panoptic diffusion model [2].
We start by patchifying the map input Mt using a convolu-
tional layer and adding positional embeddings. These map
embeddings are then concatenated with the image, text, and
time embeddings and processed through attention blocks.
Since U-ViT treats all inputs as tokens and applies self-
attention among them, the segmentation maps can be treated
as tokens in the same manner. At the end of the transformer,
we separate the features related to images and segmentation
maps, using distinct convolutional layers to unpatchify and
predict the outputs.

2.5.2. Two-stream Panoptic Diffusion Models
To leverage a pretrained model as the backbone, we design
a two-stream diffusion model consisting of a pretrained im-
age stream and a segmentation map stream, as illustrated in



Fig. 2. During fine-tuning, the transformer layers of the
image stream are kept frozen while the map stream is ad-
justed. The map stream processes image features and condi-
tions from the previous block, then concatenates them with
map features. Through self-attention, the map features and
image features become interrelated within the map stream.
The auxiliary image feature output from the map stream
is added back to the image stream via a zero-convolution
layer. This setup ensures specific control over the image
stream and allows gradients to be backpropagated from the
loss of image generation. The zero-convolution layer has
zero initial weights and no bias [47]. Unlike ControlNet,
which uses only the encoder part of the map stream to gen-
erate control signals, our model employs encoder-decoder
U-shaped transformers in both streams to co-generate im-
ages and segmentation maps.

Figure 2. Two-stream panoptic diffusion model. There are a pre-
trained image stream on the left and a fine-tuned segmentation map
stream on the right.

3. Experiments
We train our model using the COCO2017 dataset [27],
which includes both panoptic segmentation maps and image
captions. The COCO2017 dataset comprises 118k training
samples and 5k validation samples. Images are projected
into latent space using a VAE model provided by Stable Dif-
fusion [15, 41], while text conditions are encoded using the
CLIP encoder from OpenAI (clip-vit-large-patch14) [38].
We implement both one-stream and two-stream panoptic
diffusion models (PDM) based on U-ViT [2]. In contrast to
commercial models with billions of parameters, our mod-

els are significantly smaller. The one-stream PDM has 45
million parameters, while the two-stream PDM has 95 mil-
lion parameters. The image latent size is 32× 32× 4, with
a height and width of 32 and a latent channel count of 4.
The segmentation map’s height and width can be 32, 64, or
128, depending on the patch factor, and it has 8 channels,
representing 8 analog bits after conversion. The diffusion
model’s output image latents are decoded by a VAE decoder
to produce 256× 256 images.

Model FID(↓) CLIP(↑)
GLIDE [35] 12.24 ∼28
Imagen [42] 7.27 ∼27

VQ-Diffusion [15] 13.86 -
UViT [2] 8.29 27.37

One-stream PDM 18.52 26.32
Two-stream PDM 10.99 27.53

One-stream PDM given maps 8.21 28.40
Two-stream PDM given maps 11.61 28.19

Table 1. Quantitative Evaluation Results of COCO dataset.

3.1. Quantitative Evaluation
In Table.1, we compare the FID and CLIP scores of our
models with those of state-of-the-art methods [19] [18].

The results indicate that while our panoptic diffusion
models (PDMs) are trained with a combined loss of im-
ages and segmentation maps, they achieve comparable fi-
delity (FID scores) and improved relevance between image
and text (higher CLIP scores). This improvement is due
to the enhanced connectivity between the image, text, and
segmentation map. The two-stream PDM performs better
due to its pretrained stream and larger number of param-
eters. When ground-truth maps are provided, the model
performs optimally because it focuses solely on optimizing
image generation.

For more ablation study, please see the supplementary
materials 5.4.

4. Conclusion
In conclusion, we introduce the Panoptic Diffusion Model
(PDM), a pioneering approach that simultaneously gener-
ates images and panoptic segmentation maps from a given
prompt. Unlike previous diffusion models that either de-
pend on pre-existing segmentation maps or generate them
based on images, PDM inherently understands and con-
structs scene layouts during the generation process. This
innovation enables PDM to produce more creative and re-
alistic images by leveraging segmentation layouts as intrin-
sic guidance. This research lays the groundwork for future
advancements in diffusion models, offering a robust frame-
work for co-generation of images and segmentation maps.
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Supplementary Material

5. Supplementary Material

5.1. Algorithms

Algorithm 1 Training of Panoptic Diffusion model

Input: Ground truth Masks M0; Images x0; Text condi-
tion C; Total number of steps T
Output: Predicted noise ϵθ, Predicted mask Mθ

ϵ = normal(mean=0, std=1)
ϵm = normal(mean=0, std=2)
M0 = int2bits(M0)
t = randn(1,T)
xt = scheduler(x0, ϵ, t)
Mt = scheduler(M0, ϵm , t)
ϵθ, Mθ = DiffusionModel(xt, Mt, C, t)
lossx = MSE(ϵ, ϵθ)
lossm = MSE(M0, Mθ)
loss = lossx + lossm

Algorithm 2 Inference of Panoptic Diffusion model using
DPM solver

Input: Text C; Total number of steps T
Output:Generated image x0, Generated mask M0

xt= normal(mean=0, std=1)
Mt = normal(mean=0, std=1)
Sample a set of steps T from n to 0
for t in T do

# Run the diffusion model
ϵθ, Mθ = DiffusionModel(xt, Mt, C,t)
# Update predicted images and masks

x0 =
xt − σtϵθ√

ᾱ
xt, Mt = dpmSolver(x0, Mθ,Xt, Mt,t)

end for

5.2. Generated images and segmentation maps
In Fig. 4, we compare the images and masks generated by
PDM with images generated by U-ViT. By training with
segmentation masks, PDM learns that the shape of a stop
sign should be octagon, while U-ViT cannot guarantee to
generate an octagon stop sign. Similarly, PDM ensures to
generate correct shapes for a fire hydrant and a human. In
the last row of Fig. 4, PDM generates masks for not only
elephants but also for the river, while a regular diffusion
model misses the required component of the text prompt.
Figure 3 displays images generated with either ground-truth

(a) Ground-truth segmentation
maps

(b) Images generated based on
ground-truth maps

(c) Generated maps (d) Images co-generated with
maps

Figure 3. Image-map co-generation. Prompts are: 1) a small cop-
per vase with some flowers in it; 2) A giraffe examining the back
of another giraffe; 3) A utility truck is parked in the street beside
traffic cones; 4) A white yellow and blue train at an empty train
station.

segmentation maps or co-generated maps. The generated
maps in the bottom left show objects of the same categories
and similar shapes as the ground-truth maps. The images
on the right are conditioned on these segmentation maps,
demonstrating the PDM’s ability to generate correlated im-
ages and maps. While images generated with ground-truth
maps exhibit slightly better quality, co-generation removes
the need for a segmentation input and produces diverse
maps and images.

5.3. Evaluation metric for generated maps

We propose a new metric to evaluate the quality of gener-
ated segmentation maps by measuring the difference in the
number of pixels labeled as each category. While Panoptic
Quality [25] uses Intersection over Union (IoU) to assess
segmentation maps, this metric is not suitable to evaluate
maps co-generated with images. We introduce the Mean
Count Difference (MCD) metric. MCD evaluates the qual-
ity of generated maps by counting the frequency f of each
category in both the ground-truth and generated maps, then



(a) “An upside down
stop sign by the road.”

(b) PDM generated
image of a stop sign.

(c) PDM generated
octagon mask for the
stop sign.

(d) “A fire hydrant on
the side of the street. ”

(e) PDM generated
image of a fire hy-
drant.

(f) PDM generated
mask for a fire
hydrant.

(g) “A man with a wet
suit on standing on a
surfboard in the wa-
ter.”

(h) PDM generated
image of a man surf-
ing in the water.

(i) PDM generated
masks for person, sky,
and sea

(j) “Several elephants
walking together in a
line near water.”

(k) PDM generated
image of several ele-
phants near a river.

(l) PDM generated
masks for elephants,
river, grass, and sand.

Figure 4. Left: images generated by a regular diffusion model (U-
ViT) based on the text prompt. Right: images and masks generated
by a Panoptic Diffusion Model based on the same text.

summing their absolute differences. This sum is divided by
the total number of pixels, calculated as the product of the
height and width. Given that object locations on the gen-
erated map are not fixed, comparing category frequencies
rather than direct pixel values provides a more meaningful
assessment. The metric ranges from [0, 2], where zero indi-
cates identical segmentation maps and larger values indicate
greater differences.

f = bincount(M0); f ′ = bincount(Mθ)

MCD =

∑
(|f − f ′|)
H ∗W

5.4. Ablation Study
Table 2 shows increasing the patch factor results in a higher
MCD because generating higher-resolution maps with a
fixed number of latents becomes more challenging. This
creates a trade-off between map resolution and quality. We
find that a patch factor of 2 offers the best balance, yielding
the highest FID and CLIP. However, increasing the patch
factor to 4 results in worse performance, suggesting that un-
balanced patch sizes for maps and images are detrimental.

Model FID(↓) CLIP(↑) Patch MCD
One-stream PDM 18.52 26.32 2 1.638

Two-stream PDM
11.29 27.08 1 1.522
10.99 27.53 2 1.592
30.91 25.87 4 1.638

Table 2. The effect of segmentation patch size on FID, CLIP, and
MCD of generated images and masks

6. Fast DPM solver for segmentation maps
We modify the first order and third order DPM-solver++
to solve the image and map of the previous step given xt,
Mt and predicted x0, M0 [30]. The pseudo code for the
solvers are listed below. For the details of the algorithm and
definition of the parameters σ, α, ϕ, s, please check DPM-
solver++.

d e f d p m F i r s t S o l v e r ( s e l f , x 0 , m 0 , x t , m t ) :
x t =( s i g m a t / s i g m a s )* x

+( a l p h a t * p h i 1 )* x 0
# u p d a t e M[ t −1] based on M[ t ]
m t= ( s i g m a t / s i g m a s )* m t +

( a l p h a t * p h i 1 )* m 0
r e t u r n x t , m t

d e f dpmThi rdSo lve r ( s e l f , x t , m t , C , t ) :
# F i r s t s t e p
x 0 , m 0= d i f f u s i o n ( x t , m t , C , s )
x s 1 =( s i g m a s 1 / s i g m a s )* x

+( a l p h a s 1 * p h i 1 1 )* x 0
m s1= ( s i g m a s 1 / s i g m a s )* m t +

( a l p h a s 1 * p h i 1 1 )* m 0
# Second s t e p
x 02 , m 02= d i f f u s i o n ( x s1 , m s1 , C , s1 )
x s 2 =( s i g m a s 2 / s i g m a s )* x+
( a l p h a s 1 * p h i 1 2 )* x 0 +
r2 / r1 * ( a l p h a s 2 * p h i 2 2 ) * ( x 02 − x 0 )
m s2= ( s i g m a s 2 / s i g m a s )* m t +

( a l p h a s 2 * p h i 1 2 )* m 0 +
r2 / r1 * ( a l p h a s 2 * p h i 2 2 ) * ( m 02−m 0 )
# T h i r d s t e p
x 03 , m 03= d i f f u s i o n ( x s2 , m s2 , C , s2 )



x t =( s i g m a t / s i g m a s )* x
+( a l p h a t * p h i 1 )* x 0 +

( 1 / r2 ) * ( a l p h a t * p h i 2 ) * ( x 03 − x 0 )
m t= ( s i g m a t / s i g m a s )* m t +

( a l p h a t * p h i 1 )* m 0 +
( 1 / r2 ) * ( a l p h a t * p h i 2 ) * ( m 03−m 0 )

r e t u r n x t , m t

7. Related works

7.1. Diffusion Models for Image Generation

Denoising Diffusion Probabilistic Models (DDPM) use a
Markov chain to gradually add scheduled noises to images
in the forward process and then parameterize the transition
by a neural network trained to predict the noise [21]. Dur-
ing inference, a diffusion model starts from random noise
and gradually reverses it to reconstruct the image. A well-
known drawback of diffusion models is that they require a
large number of steps to generate samples iteratively. To im-
prove efficiency, researchers have proposed various modifi-
cations to diffusion models [34]. DDIM demonstrates that
diffusion models can operate in a non-Markovian manner,
resulting in shorter generative chains [45]. Additionally,
distillation algorithms have been introduced to further ac-
celerate the multi-step inference process[5, 40, 43]. We use
a fast solver for our panoptic diffusion model, which is a
modified version of DPM Solver++ that can solve the re-
verse of the diffusion process in 10-50 steps [29, 30].

The backbone neural network for a diffusion model is
typically a UNet, which is composed of convolutional lay-
ers and attention blocks, or a diffusion transformer that re-
lies solely on attention mechanisms [36, 41]. Another vari-
ant, UViT, is a type of diffusion transformer that retains
skip connections, allowing later layers to access informa-
tion from earlier layers, thereby enhancing alignment [2].

There are three main methods for applying conditions
to a diffusion model. The first approach, used in stable
diffusion, involves cross-attention between the image and
the conditions [41]. The second method appends condition
embeddings as tokens to the image patches [2]. The third
approach uses an adaptive norm layer to integrate condi-
tions with the hidden states [36]. In our panoptic diffusion
models, we opt for the second method because the trans-
former can leverage self-attention to learn the relationships
between images and maps, treating them as conditions for
each other. During inference, we apply classifier-free guid-
ance similar to Nichol et al. [35] and Ho and Salimans [20].

7.2. Image Segmentation

Object detection requires generating bounding boxes and
fine-grained masks, tasks traditionally accomplished by
convolutional neural networks such as Fast R-CNN [14] and

Mask R-CNN [16]. In Carion et al. [8], researchers intro-
duced the use of transformers to generate binary masks by
inputting object queries. Building on this, Cheng et al. [11]
proposed a collaboration between an image encoder back-
bone and a masked transformer to generate masks, where
masked attention replaces cross attention. With advanced
segmentation models like Segment Anything [26] easily
segmenting images, segmentation maps hold potential as
alternative or complementary training data for image gen-
eration tasks.

Recently, there has been growing interest in applying
diffusion models to segmentation masks. For example,
Baranchuk et al. [4] suggest that the intermediate features
of diffusion models can capture semantic information use-
ful for label-efficient segmentation. Similarly, DiffuMask
[46] and Dataset Diffusion [33] generate a synthetic pair of
an image and a corresponding segmentation annotation of
objects using attention maps. However, directly extracting
masks from attention maps lacks the ability to control the
generated image in return. Unified diffusion models for im-
age generation and segmentation has shown a potential to
refine image generation, such as UniGS [37]. While the ex-
isting works focuses on semantic segmentation, our method
extends to panoptic segmentation, providing both instance
and semantic information. This is a crucial distinction and
expands the potential applications of our model.

On the other hand, some previous studies use diffusion
models for panoptic segmentation based on given images.
In Chen et al. [10], a diffusion model comprising an image
encoder and a mask decoder is used to extract image fea-
tures and apply cross attention between these features and
the masks. To address the challenge of handling discrete
data with diffusion models, Chen et al. [9] proposed con-
verting panoptic masks into analog bits during preprocess-
ing. Our approach extends the ability of the diffusion model
to co-generate pixel-level panoptic segmentation maps and
images, allowing them to influence and control each other.

7.3. Image Guided Image Generation

Image guided image generation enables more precise con-
trol over the structure of the image and ensures faithful-
ness to users’ illustrative inputs. The input for guidance can
have various forms, such as segmentation maps and layouts
[41, 47]. Stochastic Differential Editing (SDEdit) perturbs
user inputs with Gaussian noises and then synthesizes im-
ages by reversing SDE [31]. They show that when the re-
verse SDE is not solved from the ending point but a partic-
ular timestep, the generated images can achieve a good bal-
ance between faithfulness and realism. Make-a-scene intro-
duces scene-based conditioning for image generation by op-
tionally providing tokens from segmentation maps [13], but
this method heavily relies on explicit strategies for tackling
panoptic, human, and face semantics. SpaText [1] employs



CLIP [38] to convert local text prompts that describe seg-
ments into image space and concatenate to the channel di-
mension of noises. ControlNet can accept user inputs such
as canny edges and segmentation masks for conditional con-
trol of image generation [47]. Prompt-to-prompt image
editing controls the generation by cross-attention to ensure
similarity between images generated from similar prompts
[17]. InstructPix2Pix combines Prompt-to-prompt method
with stable diffusion to generate pairs of images from pairs
of captions for training, then train the model to modify im-
age pixels following the instructions [6].

These approaches demonstrate that providing various
forms of guidance can more accurately control the struc-
ture of generated images. Building on this insight, our
method assumes that such guidance is crucial for enhanc-
ing image quality. Additionally, panoptic diffusion models
inherently generate segmentation maps alongside images,
offering built-in guidance without the need for additional
user input beyond the text prompt.

7.4. Efficient Deep Learning
To reduce the number of trained parameters or adapt the
model to a new domain, previous works have designed
adaptive blocks to fine-tune convolutional neural networks
or transformers [24, 28, 32]. In our two-stream panoptic
diffusion model, the map stream functions similarly to an
adapter. To prevent any negative impact on the pretrained
weights, we employ zero-initialized convolutional blocks as
proposed in Zhang et al. [47].

Unlike other works that introduce significant computa-
tional overhead to generate segmentation with images, our
method maintains the efficiency by leveraging a bit encod-
ing scheme and multi-scale patching. This allows for paral-
lel generation of images and masks without substantial ad-
ditional computational cost. We will include a comparison
of the number of parameters to highlight this advantage.
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