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Abstract

Recent training-free diffusion models generate high-quality
images but still misplace objects due to inherent difficulties
in spatial guidance from text prompts. We introduce STORM
(Spatial Transport Optimization by Repositioning Attention
Map), a training-free method that ensures spatial coher-
ence. STORM applies optimal-transport theory to reshape
object-level attention maps in denoising, guided by a spatial-
transport cost encoding prompt-specified locations. This
intervention corrects mislocations and also reduces missing
objects and attribute mismatches. Extensive experiments
demonstrate that STORM consistently outperforms previous
methods, establishing a new state-of-the-art for spatially
faithful text-to-image synthesis without additional training.

1. Introduction
Diffusion-based text-to-image (T2I) models can synthesize
high-quality images from textual prompts, and training-free
variants further provide real-time adaptability, lower compu-
tational cost, and broad task generalization [5, 8, 12, 14, 15].
Yet these methods still face three persistent failure modes,
missing objects, mismatched attributes, and, most critically,
mislocated objects. While recent studies have reduced the
first two problems [1, 11, 13], reliable spatial alignment re-
mains largely unaddressed, as current models often overlook
positional cues and place objects in unintended locations,
ultimately diminishing output fidelity and limiting practical
reliability across downstream applications.

Existing solutions for mislocated objects often rely on
fixed spatial templates or predefined layouts [2, 3, 17], which
offer some control but impose rigid constraints and require
additional inputs. For instance, these templates may fix an
object’s position in the image (e.g., far-left corner) instead
of offering flexible guidance like placing one object “to the
left” of another. Rather than depend on such restrictive
templates, we aim to push the boundaries of T2I models by
enabling precise alignment with textual guidance, essential
for unlocking their full potential across applications.
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Figure 1. Comparison of Spatial Awareness. { position∗ }
in each prompt denotes the spatial relationship in each column.
While Stable Diffusion (SD) shows limited spatial awareness by
generating similar images regardless of spatial prompts, our model
accurately reflects specified positions. (Same seed for all synthesis).

To this end, we propose Spatial Transport Optimization
by Repositioning Attention Map, STORM, a training-free
approach that adjusts relative object positions dynamically.
While SD disregards spatial cues (see Fig. 1), STORM
achieves various object positioning with the same model
weights, ensuring spatial alignment. To implement STORM,
we introduce the Spatial Transport Optimization (STO)
framework, which interprets each text token’s attention map
as a distribution, and leverages Optimal Transport (OT) [16]
to efficiently reposition distributions. While OT considers
both distribution and distance to minimize transformation
costs, we propose the Spatial Transport Cost (ST Cost) to
align with our objectives and guide distribution position-
ing. This function updates and optimizes the latent vector
through backward guidance, following methods from prior
work [1, 2]. Furthermore, we found that missing objects can
be resolved concurrently as mislocated objects. Extensive
experiments show that our approach outperforms existing
methods, setting a new spatial alignment benchmark.
2. Method
Since objects form in high-attention regions, we aim to repo-
sition the attention map according to prompt positions, using
relative objects as references. To achieve this, our approach
involves three attention maps: (1) source distribution: the



Figure 2. Overview pipeline of STORM. Our method leverages Optimal Transport in a training-free manner, allowing the model to
accurately reflect relative object positions at each step without additional inputs. Given the prompt “A car to the left of an elephant”, our
method dynamically adjusts the attention maps to induce the specified spatial relationship. The process starts with initial attention maps for
the “car” and “elephant” at time step zt. Using the centroids of these attention maps, the Spatial Transport Optimization (STO) computes
the losses to correct positional relationships (e.g., ensuring the car is to the left of the elephant). The updated attention map is then used to
refine the latent representation zt, leading to a final image that adheres to the desired spatial arrangement. The comparison of attention maps
(before and after STO) shows improved alignment, effectively placing the car to the left of the elephant as instructed in the prompt.

attention map of the object to be moved; (2) reference distri-
bution: the attention map of the relative object; and (3) target
distribution: arbitrary distribution which is influenced by the
reference centroid (jref, iref); it guides the source distribution
toward itself exerting minimal direct influence.
2.1. Spatial Transport Optimization Framework
Our framework has two components: a cost function and a
transport plan. The cost function steers the source distribu-
tion toward the desired direction, enabling the attention map
to shift with spatial cues. Extending standard distance-based
costs, our Spatial Transport Cost (ST Cost) adds objectives
specific to spatial alignment. The transport plan, imple-
mented with the Sinkhorn algorithm, moves the distribution
optimally. Starting from an initial attention map, STO iter-
atively updates the latent vector via ST Cost–driven losses,
gradually aligning the distribution to the target.
2.1.1. Construction of Target Distributions
At each timestep, we introduce an auxiliary target distri-
bution that steers the source relative to the reference. De-
pending on the text-specified direction, only the relevant
coordinate of the reference centroid (jref, iref) is used: jref
for “left” or “right” and iref for “above” or “below,” while the
other axis remains unconstrained. In Fig. 2a, for example,
the car (source) is guided to the left of the elephant
(reference); the same rule applies to any source object.
2.1.2. Spatial Transport Cost Function
In the STO framework, we aim to find an optimal transport
plan that minimizes the cost of transferring the attention
map. The cost function measures the expense of moving
distribution mass by computing distances between points,

where a higher value indicates less desirable locations. While
our overall cost function merges the standard OT loss with
an additional term, here we focus on our newly introduced
ST Cost, which is built on two core principles:
(I) Positional Cost: We developed a cost function to guide
the distribution to its intended position relative to the ref-
erence point. In simple terms, when the source distribu-
tion is intended to be on the left side of the reference
point, it has a low cost when positioned on the left and
a high cost when positioned on the right. To quantify
this directional positioning, we define a set of positional
δ values, representing the distances between the current
point and the reference point in each of the four direc-
tions. Specifically, the δ values are defined as follows:
δ←ij = jref − j, δ→ij = j − jref, δ

↑
ij = iref − i, δ↓ij = i − iref,

with j and i representing the current position values, and
the arrows indicate the desired and restricted direction for
positioning the source attention map relative to the reference
point. When constructing the overall cost function that incor-
porates all directional δ values, each direction is categorized
as either desired or restricted. The desired direction (δdes)
corresponds to the intended movement of the source dis-
tribution, while the restricted direction (δres) represents the
opposite or undesired direction. For instance, if the source
distribution should move to the left, δ←ij is marked as the
desired direction (δdes), while δ→ij is treated as the restricted
direction (δres). The combined cost function, accounting for
both desired and restricted positions, can be expressed as:

∆ij(δ
des
ij , δ

res
ij ) =

1

ω(δdes
ij + ϵ)

1+[δ
des
ij ] + ω(δres

ij + ϵ)1+[δ
res
ij ], (1)

where ω(·) > 1 is a progressive adaptive weight that con-
trols the alignment importance across timesteps, and ϵ is



Figure 3. Qualitative comparison across the custom prompt, which involves attribute and positional information in text, evaluating previous
state-of-the-art training-free T2I methods, Attend&Excite [1], Divide&Bind [11], INITNO [7], CONFORM [13], and ours.

a stabilizing factor. 1+ is an indicator function that equals
1 when the input is positive and 0 otherwise, allowing se-
lective application of computation based on positivity. As
the source distribution aligns more closely with the desired
direction, the ∆ value approaches zero, indicating minimal
cost for correctly aligned positioning.
(II) Non-overlap Cost: In this process, it is crucial to pre-
vent the source distribution from overlapping with the ref-
erence distribution during its movement. This is one of the
primary issues in addressing the missing object problem in
SD, where avoiding overlap is essential for ensuring that
each object is distinctly represented. To achieve this, we
simply embed the reference distribution directly into the
cost function, guiding objects to occupy separate locations.
Specifically, with Aij representing the attention weight of
the reference distribution, we incorporated this distribution
into the cost function, assigning high costs to regions occu-
pied by the reference distribution and low costs elsewhere.

Combining this principle with our core ideas, our cost
function can be defined as follows:

Cij = Aij∆ij(δ
des
ij , δ

res
ij ). (2)

2.1.3. Sinkhorn Algorithm-based Transport Plan
After combining the standard OT approach with ST compo-
nents, we compute the transport plan using the Sinkhorn
algorithm [4], which applies entropic regularization for

Table 1. Performance comparison between different models on
VISOR (%) and Object Accuracy (OA) (%) metrics, based on
Stable Diffusion 1.4 and Stable Diffusion 2.1 [15]. Bold marks
best, underline marks second best.

Model OA (%) VISORuncond (%) VISORcond (%)

Stable Diffusion 1.4 based
SD 1.4 29.86 18.81 62.98
SD 1.4 + CDM 23.27 14.99 64.41
GLIDE 3.36 1.98 59.06
GLIDE + CDM 10.17 6.43 63.21
Structure Diffusion 28.65 17.87 62.36
Attend-and-Excite 42.07 25.75 61.21
Divide-and-Bind† 46.03 31.62 68.70
INITNO† 60.40 35.18 58.24
CONFORM† 60.73 38.48 62.33
Ours (SD 1.4) 61.01 57.58 94.39
Stable Diffusion 2.1 based
SD 2.1 47.83 30.25 63.24
SPRIGHT 60.68 42.23 71.24
Ours (SD 2.1) 62.55 59.35 94.88

computational efficiency and stability, especially for high-
dimensional attention maps. The Sinkhorn algorithm iter-
atively updates the transport plan P to meet the marginal
constraints of source and target distributions, applying the
cost function bidirectionally for both objects.

2.2. Optimization and Update Process
We update the latent vector using STO-based losses to guide
the spatial alignment of the attention maps in a differentiable



Table 2. Comparison of methods on T2I-CompBench, calculating
attribute binding and spatial relationships.

Method
Attribute
Binding
(Color ↑)

Attribute
Binding

(Shape ↑)

Attribute
Binding

(Texture ↑)

Object
Relationship
(Spatial ↑)

Stable Diffusion 1.4 Based
Stable Diffusion-v1.4 [15] 0.3765 0.3576 0.4156 0.1246
Ours (SD 1.4) 0.6458 0.5983 0.7539 0.1613
Stable Diffusion 2.1 Based
Stable Diffusion-v2.1 [15] 0.5065 0.4221 0.4922 0.1342
Composable Diffusion [12] 0.4063 0.3299 0.3645 0.0800
Structured Diffusion [5] 0.4990 0.4218 0.4900 0.1386
Attend-and-Excite [1] 0.6400 0.4517 0.5963 0.1455
Ours (SD 2.1) 0.6777 0.6226 0.7884 0.1981

Table 3. User study evaluating model performance on object syn-
thesis, attribute matching, spatial correctness, and overall fidelity.

Method Object
Accuracy (%)

Attribute
Matching (%)

Spatial
Correctness (%)

Overall
Fidelity (%)

Stable Diffusion [15] 14.68 14.31 11.81 15.02
Attend-and-Excite [1] 16.34 16.50 13.20 16.04
Divide-and-Bind [11] 16.39 15.69 13.01 16.52
INITNO [7] 15.98 16.03 13.15 15.63
CONFORM [13] 15.64 16.79 12.91 14.14
Ours 20.97 20.68 35.92 22.65

manner. At each timestep, we compute the ST loss L and
update the latent vector zt as z′t ← zt −αt · ∇ztL where αt

is the step size. After the update, a forward pass computes
zt−1 for the next denoising step.
3. Experiments
Implementation Details. We follow established proto-
cols [1, 11, 13]: Stable Diffusion [15] v1.4 and v2.1, 50
denoising steps, guidance scale 7.5. To smooth the cross-
attention map, a Gaussian filter with a kernel size of 3 and a
standard deviation of 0.5 was applied. Optimization updates
are applied at timesteps 5, 10, 15, 20, and halted at 25.
3.1. Evaluation Results
We evaluated our method against existing training-free T2I
models using both qualitative and quantitative measures,
focusing on two key aspects: Spatial Accuracy and Object
and Attribute Consistency.
Quantitative Evaluation: VISOR. To evaluate spatial accu-
racy, we use the VISOR [6] to measure the ability of a model
to position objects based on spatial cues (e.g., above) in text
prompts. VISOR benchmark contains over 25K prompts
describing spatial relationships between objects.
Quantitative Evaluation: T2I-CompBench. The T2I-
CompBench [9] evaluates object presence, spatial relations,
and attribute alignment. We use its attribute and spatial sub-
sets, averaging scores over 10+ random seeds. Attribute
binding is measured with BLIP-VQA [10], and spatial rela-
tions with the UniDet metric [18]. As Table 2 shows, our
images place objects correctly and preserve their attributes.
Quantitative Evaluation: User Studies. We create 10 cus-
tom text prompts with detailed objects, attributes, and spatial
information, then generate images using random seeds. With
30 participants, our user study evaluates (1) object accuracy,
(2) attribute matching, (3) spatial correctness, and (4) over-
all fidelity. In Table 3, our model shows surpassing results
across the existing models of all categories.

Table 4. Ablation study on the impact of applying STO at different
timesteps. Exp.#A0 is the SD baseline, and Exp. #A1 to #A4 apply
STO over progressively broader timestep ranges: 19–24, 13–24,
7–24, and 1–24 (Ours).

# Exp. OA (%) VISOR

uncond cond 1 2 3 4

A0 29.86 18.81 62.98 46.60 20.11 6.89 1.63
A1 46.62 37.48 80.38 74.11 45.73 22.30 7.82
A2 55.65 47.90 86.07 81.63 60.30 35.89 13.81
A3 59.85 53.62 89.60 83.61 67.53 44.12 19.31

A4 (Ours) 61.01 57.58 94.39 85.93 69.71 49.01 25.70

Figure 4. Comparison of results when applying STO at different
timesteps. From left: baseline (no STO), STO at 19-24, 13-24,
7-24, and 1-24 (ours). Earlier application yields clearer separation
and more accurate placement; see Table 4 for quantitative results.
Qualitative Analysis. Fig.3 compares our model with recent
state-of-the-art methods[7, 13]. Using custom prompts that
test both attribute fidelity and spatial accuracy, other mod-
els often misplace objects; for example, a rabbit over-
laps a backpack instead of appearing to its right. Our
positioning-focused approach, in contrast, aligns objects cor-
rectly and preserves their attributes.

3.2. Ablation Studies
Effects of Optimizing through Timestep. Table 4 com-
pares STO applied at four timestep ranges (Exp.#A1 19–24,
Exp.#A2 13–24, Exp.#A3 7–24, Exp.#A4 1–24). These ex-
periments show that setting spatial configurations in the early
stages is essential not only for positional accuracy but also
for achieving higher OA. This improvement increases as spa-
tial relationships are established earlier in the process. All
configurations with STO outperform the baseline (Exp.#A0,
without STO), demonstrating a substantial improvement in
both object positioning and accuracy. In Fig. 4, tie placement
is optimal when spatial cues are applied early, while delayed
guidance leads to misplacements or suboptimal synthesis.

4. Conclusion
We introduced STORM, a framework that dynamically ad-
dresses spatial misalignment issues in training-free T2I syn-
thesis. By leveraging the STO framework, which combines
the ST Cost function in Optimal Transport theory, STORM
not only resolves mislocated objects but also tackles miss-
ing objects and mismatched attributes. Extensive exper-
iments show that STORM significantly improves spatial
alignment and object accuracy, surpassing existing state-of-
the-art methods.
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